精英家教网 > 高中数学 > 题目详情
11.已知f(x)=Asin(ωx+φ)(A>0ω>0,$|φ|<\frac{π}{2}$,x∈R)在一个周期的图象如图所示,当$f(x)=\frac{1}{2}$时,$cos(2x-\frac{π}{6})$=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

分析 由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式,再利用诱导公式,求得要求式子的值.

解答 解:根据f(x)=Asin(ωx+φ)(A>0ω>0,$|φ|<\frac{π}{2}$,x∈R)在一个周期的图象,
可得A=1,$\frac{T}{4}$=$\frac{1}{4}•\frac{2π}{ω}$=$\frac{π}{12}$+$\frac{π}{6}$,∴ω=2,∴f(x)=sin(2x+φ).
再根据五点法作图可得2×$\frac{π}{12}$+φ=$\frac{π}{2}$,∴φ=$\frac{π}{3}$,f(x)=sin(2x+$\frac{π}{3}$).
故当$f(x)=\frac{1}{2}$=sin(2x+$\frac{π}{3}$)时,$cos(2x-\frac{π}{6})$=sin($\frac{π}{2}$+2x-$\frac{π}{6}$)=sin(2x+$\frac{π}{3}$)=$\frac{1}{2}$,
故选:B.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.设幂函数f(x)=(m+3)xm,则f(2)-f(-2)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=loga(x+1),g(x)=loga(1-x)(a>0,且a≠1).设F(x)=f(x)+g(x),G(x)=f(x)-g(x),解决下列问题:
(1)求函数F(x)的定义域;
(2)证明F(x)为偶函数;并求F(x)的值域;
(3)证明G(x)为奇函数;并判断函数G(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.集合A={直线l|直线l的方程是(m+3)x+(m-2)y-1-2m=0},集合B={直线l|直线l是x2+y2=2的切线},则A∩B=(  )
A.B.{(1,1)}C.{(x,y)|x+y-2=0}D.{(x,y)|3x-2y-1=0}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.下列命题:①a>b⇒c-a<c-b;②a>b,$c>0⇒\frac{c}{a}<\frac{c}{b}$;③a>b⇒ac2>bc2;④a3>b3⇒a>b,其中正确的命题个数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某船在A处向正东方向航行xkm后到达B处,然后沿南偏西60°方向航行3km到达C处.若A与C相距$\sqrt{3}$km,则x的值是(  )
A.3B.$\sqrt{3}$或2$\sqrt{3}$C.2$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若函数y=(a2-3a+3)•logax是对数函数,又函数$f(x)={log_2}({b^x}-{a^x})$中f(1)=1,
(1)求a,b的值;
(2)当x∈[1,3]时,求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)已知$f(\frac{1}{x})=\frac{x}{{1-{x^2}}}$,求函数f(x)的解析式.
(2)已知二次函数f(x)满足f(0)=2,f(x+1)-f(x)=2x-1对任意实数x都成立,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD为菱形,.点分E,F,G,H别是棱AB,CD,PC,PB上共面的四点,且BC∥EF. 
证明:GH∥EF.

查看答案和解析>>

同步练习册答案