精英家教网 > 高中数学 > 题目详情
若AB是过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
中心的一条弦,M是椭圆上任意一点,且AM,BM与坐标轴不平行,kAM,kBM分别表示直线AM,BM的斜率,则kAM•kBM=(  )
A.-
c2
a2
B.-
b2
a2
C.-
c2
b2
D.-
a2
b2
设A(x1,y1),M(x0,y0),则B(-x1,-y1),则kAM•kBM=
y20
-
y21
x20
-
x21

∵A,M在椭圆上,
x21
a2
+
y21
b2
=1
x20
a2
+
y20
b2
=1
,两式相减,可得KAM•KBM=--
b2
a2

故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,椭圆
x2
a2
+
y2
b2
=1(a>b>0)与过A(2,0),B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=
3
2

(1)求椭圆方程;
(2)设F1、F2分别为椭圆的左、右焦点,M为线段AF2的中点,求tan∠ATM.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆的一个焦点与短轴的两个顶点可构成一个等边三角形,则椭圆的离心率为(  )
A.
1
4
B.
1
2
C.
2
2
D.
3
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆
x2
a2
+
y2
b2
=1的两焦点为F1、F2,长轴两端点为A1、A2
(1)P是椭圆上一点,且∠F1PF2=60°,求△F1PF2的面积;
(2)若椭圆上存在一点Q,使∠A1QA2=120°,求椭圆离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
100
+
y2
36
=1
的焦距等于(  )
A.20B.16C.12D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设F1、F2为椭圆16x2+25y2=400的焦点,P为椭圆上的一点,则△PF1F2的周长是______,△PF1F2的面积的最大值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知c是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的半焦距,则
b+c
a
的取值范围是(  )
A.(1,+∞)B.(
2
,+∞)
C.(1,
2
D.(1,
2
]

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

人造地球卫星的运行轨道是以地心为一个焦点的椭圆.设地球半径为R,卫星近地点、远地点离地面的距离分别是r1,r2,则卫星轨道的离心率=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知P为椭圆
x2
16
+
y2
9
=1
上的一点,B1,B2分别为椭圆的上、下顶点,若△PB1B2的面积为6,则满足条件的点P的个数为(  )
A.0B.2C.4D.6

查看答案和解析>>

同步练习册答案