精英家教网 > 高中数学 > 题目详情

【题目】一个摸球游戏,规则如下:在一不透明的纸盒中,装有6个大小相同、颜色各异的玻璃球.参加者交费1元可玩1次游戏,从中有放回地摸球3次.参加者预先指定盒中的某一种颜色的玻璃球,然后摸球.当所指定的玻璃球不出现时,游戏费被没收;当所指定的玻璃球出现1次,2次,3次时,参加者可相应获得游戏费的0倍,1倍,倍的奖励(),且游戏费仍退还给参加者.记参加者玩1次游戏的收益为元.

1)求概率的值;

2)为使收益的数学期望不小于0元,求的最小值.

(注:概率学源于赌博,请自觉远离不正当的游戏!)

【答案】12110

【解析】

试题(1)先明确事件表示有放回的摸球3回,所指定的玻璃球只出现1,再根据概率计算方法得:2)先确定随机变量取法:的可能值为,再分别求对应概率:,利用数学期望公式得(元).为使收益的数学期望不小于0元,所以,即

试题解析:解:(1)事件表示有放回的摸球3回,所指定的玻璃球只出现1

2)依题意,的可能值为

结合(1)知,参加游戏者的收益的数学期望为

(元).

为使收益的数学期望不小于0元,所以,即

答:的最小值为110

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为(其中为参数,的倾斜角,且),曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程及曲线的直角坐标方程;

2)已知点,曲线交于两点,与交于点,且,求的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求曲线处的切线方程;

(2)若对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本题满分14分

在数列中,,且.

() 求,猜想的表达式,并加以证明;

() 设,求证:对任意的自然数,都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为,且乙投球2次均未命中的概率为.

)求乙投球的命中率

)若甲投球1次,乙投球2次,两人共命中的次数记为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在集合中,任取个元素构成集合. 若的所有元素之和为偶数,则称的偶子集,其个数记为;若的所有元素之和为奇数,则称的奇子集,其个数记为. 令

(1)当 时,求的值;

(2)求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图分别为定义域和值域均为的函数和函数的图象,则下列命题正确的是(

A.函数恰有个零点B.函数恰有个零点

C.函数恰有个零点D.函数恰有个零点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

1)求函数的单调区间;

2)当时,对任意的,存在,使得成立,试确定实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲,乙两人玩摸球游戏,每两局为一轮,每局游戏的规则如下:甲,乙两人均从装有4只红球、1只黑球的袋中轮流不放回摸取1只球,摸到黑球的人获胜,并结束该局.

(1)若在一局中甲先摸,求甲在该局获胜的概率;

(2)若在一轮游戏中约定:第一局甲先摸,第二局乙先摸,每一局先摸并获胜的人得1分,后摸井获胜的人得2分,未获胜的人得0分,求此轮游戏中甲得分X的概率分布及数学期望.

查看答案和解析>>

同步练习册答案