精英家教网 > 高中数学 > 题目详情
4.若从2个滨海城市和2个内陆城市中随机选取1个取旅游,那么恰好选1个滨海城市的概率是(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{1}{2}$

分析 先求出基本事件总数n=4,再求出恰好选1个海滨城市包含的基本事件个数m=2,由此能求出恰好选1个海滨城市的概率.

解答 解:从2个海滨城市和2个内陆城市中随机选1个去旅游,
基本事件总数n=4
恰好选1个海滨城市包含的基本事件个数m=2,
恰好选1个海滨城市的概率是p=$\frac{2}{4}$=$\frac{1}{2}$.
故选:D.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数$f(x)=\sqrt{3}sin2x-cos2x$的图象在区间$[{0,\frac{a}{3}}]$和$[{2a,\frac{4π}{3}}]$上均单调递增,则正数a的取值范围是(  )
A.$[{\frac{π}{6},\frac{5π}{12}}]$B.$[{\frac{5π}{12},π}]$C.$[{\frac{π}{4},π}]$D.$[{\frac{π}{4},\frac{2π}{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.执行如图的程序框图,则输出的结果为(  )
A.15B.3C.-11D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知二次函数f(x)=ax2-2x+c的值域为[0,+∞),则$\frac{9}{a}+\frac{1}{c}$的最小值为(  )
A.3B.6C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设△ABC的内角A,B,C所对边的长分别为a,b,c.若sinA=2sinB,c=4,C=$\frac{π}{3}$,则△ABC的面积为$\frac{8\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某超市计划每天购进某商品若干件,该超市每销售一件该商品可获利润80元,若供大于求,剩余商品全部退回,但每件商品亏损20元;若供不应求,则从外部调剂,此时每件调剂商品可获利40元.
(Ⅰ)若商店一天购进该商品10件,求当天的利润y(单位:元)关于当天需求量n(单位:件,n∈N)的函数解析式;
(Ⅱ)商店记录了50天该商品的日需求量n(单位:件,n∈N),整理得下表:
日需求量789101112
频数571014104
若商店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润在区间[800,900]内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=$\frac{ln|x-1|}{|1-x|}$的图象大致为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.欧拉,瑞士数学家,18世纪数学界最杰出的人物之一,是有史以来最多遗产的数学家,数学史上称十八世纪为“欧拉时代”.1735年,他提出了欧拉公式:e=cosθ+isinθ.被后人称为“最引人注目的数学公式”.若$θ=\frac{2π}{3}$,则复数z=e对应复平面内的点所在的象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=$\frac{2}{x}$-2+2alnx.
(1)讨论函数f(x)的单调性;
(2)若f(x)在区间[$\frac{1}{2}$,2]上的最小值为0,求实数a的值.

查看答案和解析>>

同步练习册答案