(本小题共13分)
已知集合对于,,定义A与B的差为
A与B之间的距离为
(Ⅰ)证明:,且;
(Ⅱ)证明:三个数中至少有一个是偶数
(Ⅲ) 设P,P中有m(m≥2)个元素,记P中所有两元素间距离的平均值为.
证明:≤.
【分析】:这道题目的难点主要出现在读题上,这里简要分析一下。
题目所给的条件其实包含两个定义,第一个是关于的,其实中的元素就是一个n维的坐标,其中每个坐标值都是0或者1, 也可以这样理解,就是一个n位数字的数组,每个数字都只能是0和1, 第二个定义叫距离,距离定义在两者之间,如果直观理解就是看两个数组有多少位不同,因为只有0和1才能产生一个单位的距离,因此这个大题最核心的就是处理数组上的每一位数,然后将处理的结果综合起来,就能看到整体的性质了。
第一问,因为每个数位上都是0或者1,取差的绝对值仍然是0或者1,符合的要求。然后是减去C的数位,不管减去的是0还是1, 每一个a和每一个b都是同时减去的,因此不影响他们原先的差。
第二问,先比较A和B有几个不同(因为距离就是不同的有几个),然后比较A和C有几个不同,这两者重复的(就是某一位上A和B不同,A和C不同,那么这一位上B和C就相同)去掉两次(因为在前两次比较中各计算了一次),剩下的就是B和C的不同数目,很容易得到这样的关系式:,从而三者不可能同为奇数。
第三问,首先理解P中会出现个距离,所以平均距离就是距离总和再除以,而距离的总和仍然可以分解到每个数位上,第一位一共产生了多少个不同,第二位一共产生了多少个不同,如此下去,直到第n位。然后思考,第一位一共m个数,只有0和1会产生一个单位距离,因此只要分开0和1的数目即可,等算出来一切就水到渠成了。
此外,这个问题需要注意一下数学语言的书写规范。
解:(1)设
因,故,
即
又
当时,有;
当时,有
故
(2)设
记
记,由第一问可知:
即中1的个数为k,中1的个数为l,
设t是使成立的i的个数,则有,
由此可知,不可能全为奇数,即三个数中至少有一个是偶数。
(3)显然P中会产生个距离,也就是说,其中表示P中每两个元素距离的总和。
分别考察第i个位置,不妨设P中第i个位置一共出现了个1, 那么自然有个0,因此在这个位置上所产生的距离总和为,
那么n个位置的总和
即
科目:高中数学 来源: 题型:
(本小题共13分)
已知函数
(I)若x=1为的极值点,求a的值;
(II)若的图象在点(1,)处的切线方程为,
(i)求在区间[-2,4]上的最大值;
(ii)求函数的单调区间.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年北京市高三压轴文科数学试卷(解析版) 题型:解答题
(本小题共13分)
已知向量,设函数.
(Ⅰ)求函数在上的单调递增区间;
(Ⅱ)在中,,,分别是角,,的对边,为锐角,若,,的面积为,求边的长.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年北京市丰台区高三下学期统一练习数学理卷 题型:解答题
(本小题共13分)
某商场在店庆日进行抽奖促销活动,当日在该店消费的顾客可参加抽奖.抽奖箱中有大小完全相同的4个小球,分别标有字“生”“意”“兴”“隆”.顾客从中任意取出1个球,记下上面的字后放回箱中,再从中任取1个球,重复以上操作,最多取4次,并规定若取出“隆”字球,则停止取球.获奖规则如下:依次取到标有“生”“意”“兴”“隆”字的球为一等奖;不分顺序取到标有“生”“意”“兴”“隆”字的球,为二等奖;取到的4个球中有标有“生”“意”“兴”三个字的球为三等奖.
(Ⅰ)求分别获得一、二、三等奖的概率;
(Ⅱ)设摸球次数为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源:北京市宣武区2010年高三第一次质量检测数学(文)试题 题型:解答题
(本小题共13分)
已知函数
(I)当a=1时,求函数的最小正周期及图象的对称轴方程式;
(II)当a=2时,在的条件下,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com