分析 几何体是一个底面是顶角为120°且底边长是2$\sqrt{3}$,在等腰三角形的顶点处有一条垂直于底面的侧棱,侧棱长是2,建立适当的坐标系,写出各个点的坐标和设出球心的坐标,根据各个点到球心的距离相等,点的球心的坐标,可得球的半径,做出体积.
解答 解:由三视图知:几何体为三棱锥,且一条侧棱与底面垂直,高为2,
三棱锥的底面为等腰三角形,且三角形的底边长为2$\sqrt{3}$,底边上的高为1,
∴几何体的体积V=$\frac{1}{3}$×$\frac{1}{2}$×2$\sqrt{3}$×1×2=$\frac{2\sqrt{3}}{3}$.
以D为原点,DB为x轴,DA为y轴,建立空间直角坐标系,
则D(0,0,0),A(0,0,2),B(2,0,0),C(-1,$\sqrt{3}$,0)
∵(x-2)2+y2+z2=x2+y2+z2,①
x2+y2+(z-2)2=x2+y2+z2,②
(x+1)2+(y-$\sqrt{3}$)2+z2=x2+y2+z2,③
∴x=1,y=$\sqrt{3}$,z=1,
∴球心的坐标是(1,$\sqrt{3}$,1),
∴球的半径是$\sqrt{5}$,
故答案为:$\frac{2\sqrt{3}}{3}$,$\sqrt{5}$.
点评 本题考查由三视图求几何体的体积,考查由三视图还原几何体,考查三棱锥与外接球之间的关系,考查利用空间向量解决立体几何问题.
科目:高中数学 来源: 题型:选择题
A. | 8 | B. | $\frac{16}{3}$ | C. | 3 | D. | $\frac{8}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\overrightarrow n=±({1,-1,1})$ | B. | $\overrightarrow n=±({\frac{1}{3},-\frac{1}{3},\frac{1}{3}})$ | C. | $\overrightarrow n=±({\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$ | D. | $\overrightarrow n=±({\frac{{\sqrt{3}}}{3},-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | p∧(¬q) | B. | (¬p)∧(¬q) | C. | (¬p)∧q | D. | p∧q |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com