精英家教网 > 高中数学 > 题目详情
13.正方体表面积为24,则它的外接球、内切球、以及与它的各条棱都相切的球的表面积分别是12π;4π;8π.

分析 由已知中一个正方体的棱长为2,根据正方体的几何特征求出球的半径,代入球的表面积公式,即可得到答案.

解答 解:∵正方体表面积为24,∴正方体的棱长为2,
外接球的半径为$\frac{\sqrt{3}}{2}•2$=$\sqrt{3}$,则球的表面积S=4πR2=12π;
内切球的半径为1,则球的表面积S=4πR2=4π;
与它的每条棱都相切的球的直径等于正方体底面对角线的长,
即2R=2$\sqrt{2}$,则球的表面积S=4πR2=8π.
故答案为:12π;4π;8π.

点评 本题考查的知识点是球的表面积,其中根据已知条件,结合正方体的结构特征求出球的半径是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知a1=1,an+1=$\frac{{{a}_{n}}^{2}+2}{2{a}_{n}-1}$,求an的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在等比数列{an}中,相邻三项为an-1,an,an+1,则an=±$\sqrt{{a}_{n-1}{a}_{n+1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若关于x的一元二次实系数方程x2+px+q=0有一个根为 1+i,(i为虚数单位),则p+q的值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.一小车A从静止开始以2m/s2的加速度作匀加速度直线运动,持续5秒钟后作加速度为0的匀速直线运动,并保持10秒,最后以-1m/s2的加速度作匀减速度直线运动直至小车静止.另有一小车B在同一起点,从开始时刻以速度v0作匀速直线运动.
(1)写出小车A的速度v与时间t的函数关系式,并作出其函数图象;
(2)写出小车A的位移S与时间t的函数关系式.
(3)若小车B在小车A的静止地点与A相遇,求小车B的速度v0及两车另一相遇时刻;
(4)若小车A、B存在两个相遇的时刻,求小车B的速度v0的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.袋中有若干个黑球,3个白球,2个红球(大小形状相同),从中任取2个球,每取到一个黑球得0分,每取到一个白球得1分,每取到一个红球得2分,已知得0分的概率为$\frac{1}{6}$.求
(1)袋中黑球的个数;
(2)至少得2分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.直线l不经过第四象限,它的倾斜角为$\frac{π}{6}$,原点到该直线的距离为$\frac{{\sqrt{3}}}{2}$,则直线l的方程是$y=\frac{{\sqrt{3}}}{3}x+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.有三个数a,b,c成等比数列,其积为512,且a-2,b,c-2成等差数列,求a,b,c这三个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.过原点作曲线y=ex的切线,则切点坐标为(1,e),切线方程为y=ex.

查看答案和解析>>

同步练习册答案