精英家教网 > 高中数学 > 题目详情
18.如图,已知三棱锥P-ABC,BC⊥AC,BC=AC=2,PA=PB,平面PAB⊥平面ABC,D、E、F分别是AB、PB、PC的中点.
(Ⅰ)证明:PD⊥平面ABC;
(Ⅱ)若M为BC中点,且PM⊥平面EFD,求三棱锥P-ABC的体积.

分析 (Ⅰ)由PA=PB,D为AB中点,可得PD⊥AB,再由面面垂直的性质可得PD⊥平面ABC;
(Ⅱ)设PM交EF于N,连接DM,DN,由线面垂直的性质得到PM⊥DN,由已知可得DN垂直平分PM,故PD=DM,求出DM,进一步求得PD.即三棱锥P-ABC的高,然后由三棱锥体积公式求得三棱锥P-ABC的体积.

解答 (Ⅰ)证明:∵PA=PB,D为AB中点,∴PD⊥AB,
又平面PAB⊥平面ABC,交线为AB,PD?平面PAB,
∴PD⊥平面ABC;
(Ⅱ)解:设PM交EF于N,连接DM,DN,
∵PM⊥平面EFD,DN?平面DEF,
∴PM⊥DN,
又E,F分别是PB,PC的中点,
∴N为EF的中点,也是PM的中点,
∴DN垂直平分PM,故PD=DM,
又DM为△ABC的中位线,则DM=$\frac{1}{2}AC$=1,∴PD=1.
∵BC⊥AC,则${S}_{△ABC}=\frac{1}{2}AC•BC=2$.
∴三棱锥P-ABC的体积${V}_{P-ABC}=\frac{1}{3}{S}_{△ABC}•PD=\frac{2}{3}$

点评 本题考查直线与平面垂直的判定,考查空间想象能力和思维能力,训练了多面体体积的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.为了得到函数y=sin(2x-$\frac{π}{5}$),x∈R的图象,只需将函数y=sin2x,x∈R的图象上所有的点(  )
A.向左平行移动$\frac{π}{5}$个单位长度B.向右平行移动$\frac{π}{5}$个单位长度
C.向左平行移动$\frac{π}{10}$个单位长度D.向右平行移动$\frac{π}{10}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.曲线y=4x+x2在点(-1,-3)处的切线方程是(  )
A.y=7x+4B.y=7x+2C.y=x-4D.y=2x-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.几个月前,成都街头开始兴起“mobike”、“ofo”等共享单车,这样的共享单车为很多市民解决了最后一公里的出行难题,然而,这种模式也遇到了一些让人尴尬的问题,比如乱停乱放,或将共享单车占为“私有”等.
  为此,某机构就是否支持发展共享单车随机调查了50人,他们年龄的分布及支持发展共享单车的人数统计如表:
年龄[15,20)[20,25)[25,30)[30,35)[35,40)[40,45)
受访人数56159105
支持发展
共享单车人数
4512973
(1)由以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.1的前提下,认为年龄与是否支持发展共享单车有关系;
年龄低于35岁年龄不低于35岁合计
支持   
不支持   
合计  
(2)若对年龄在[15,20)的被调查人中随机选取两人进行调查,求恰好这两人都支持发展共享单车的概率.
参考数据:
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{3}x+1,x≤1}\\{lnx,x>1}\end{array}\right.$,若方程f(x)-ax=0恰有两个不同的根,则实数a的取值范围是(  )
A.(0,$\frac{1}{3}$)B.[$\frac{1}{3}$,$\frac{1}{e}$)C.($\frac{1}{e}$,$\frac{4}{3}$]D.(-∞,0]∪[$\frac{4}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.
(1)求数列{an}的通项公式;
(2)令bn=$\frac{4n}{{a}_{n}{a}_{n+1}}$•sin$\frac{{a}_{n}π}{2}$,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知抛物线C:y2=6x的焦点为F,点A(0,m),m>0,射线FA于抛物线C交于点M,与其准线交于点N,若|
MN|=2|FM|,则m=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),定义椭圆C上的点M(x0,y0)的“伴随点”为$N(\frac{x_0}{a},\frac{y_0}{b})$.
(1)求椭圆C上的点M的“伴随点”N的轨迹方程;
(2)如果椭圆C上的点(1,$\frac{3}{2}$)的“伴随点”为($\frac{1}{2}$,$\frac{3}{2b}$),对于椭圆C上的任意点M及它的“伴随点”N,求$\overrightarrow{OM}•\overrightarrow{ON}$的取值范围;
(3)当a=2,b=$\sqrt{3}$时,直线l交椭圆C于A,B两点,若点A,B的“伴随点”分别是P,Q,且以PQ为直径的圆经过坐标原点O,求△OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知对任意实数k>1,关于x的不等式$k({x-a})>\frac{2x}{e^x}$在(0,+∞)上恒成立,则a的最大整数值为(  )
A.0B.-1C.-2D.-3

查看答案和解析>>

同步练习册答案