精英家教网 > 高中数学 > 题目详情

【题目】设函数 的图象在点处的切线与直线平行.

(1)求的值;

(2)若函数,且在区间上是单调函数,求实数的取值范围.

【答案】(1);(2).

【解析】试题分析:(1)由题意知,曲线y=f(x)的图象在点(1,f(1))处的切线斜率为3,求导数,代入计算,即可得出结论;
(2)求导数,分类讨论,即可求实数a的取值范围.

试题解析:

(1)由题意知,曲线的图象在点处的切线斜率为3,

所以,又, 即,所以

(2)由(1)知

所以

①若在区间(0,+∞)上为单调递减函数,则在(0,+∞)上恒成立,

,所以

,则

,得,由,得

在(0,1]上是减函数,在[1,+∞)上是增函数, 则 无最大值, 在(0,+∞)上不恒成立, 故在(0,+∞)不可能是单调减函数

②若在(0,+∞)上为单调递增函数,则在(0,+∞)上恒成立,

,所以, 由前面推理知, 的最小值为,∴

a的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数,且当x≥0时,f(x)=x|x﹣2|.若关于x的方程f2(x)+af(x)+b=0(a,b∈R)恰有10个不同实数解,则a的取值范围为(
A.(0,2)
B.(﹣2,0)
C.(1,2)
D.(﹣2,﹣1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别为△ABC三个内角A,B,C所对的边长,且acosB+bcosA=2ccosC.
(1)求角C的值;
(2)若c=4,a+b=7,求SABC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的极值;

2)若,试讨论关于的方程 的解的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数有4个零点,其图象如下图,和图象吻合的函数解析式是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(x﹣2)2+y2=9,直线l:x+y=0.
(1)求过圆C的圆心且与直线l垂直的直线n的方程;
(2)求与圆C相切,且与直线l平行的直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C1:x2+y2=4与圆C2:(x﹣1)2+(y﹣3)2=4,过动点P(a,b)分别作圆C1、圆C2的切线PM,PN,(M,N分别为切点),若|PM|=|PN|,则a2+b2﹣6a﹣4b+13的最小值是(
A.5
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的离心率为,其左顶点在圆上.

1求椭圆的方程;

2直线与椭圆的另一个交点为,与圆的另一个交点为.

时,求直线的斜率;

是否存在直线,使?若存在,求出直线的斜率;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥S﹣ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,点E、F、G分别是棱SA、SB、SC的中点.求证:
(1)平面EFG∥平面ABC;
(2)BC⊥平面SAB.

查看答案和解析>>

同步练习册答案