在数列中,().
(1)求的值;
(2)是否存在常数,使得数列是一个等差数列?若存在,求的值及的通项公式;若不存在,请说明理由.
科目:高中数学 来源: 题型:解答题
已知数列{an}满足a1=3,an+1=an+p·3n(n∈N*,p为常数),a1,a2+6,a3成等差数列.
(1)求p的值及数列{an}的通项公式;
(2)设数列{bn}满足bn=,证明:bn≤.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知{an}是等差数列,a1=3,Sn是其前n项和,在各项均为正数的等比数列{bn}中,b1=1,且b2+S2=10,S5 =5b3+3a2.
(I )求数列{an}, {bn}的通项公式;
(II)设,数列{cn}的前n项和为Tn,求证
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
对于任意的(不超过数列的项数),若数列的前项和等于该数列的前项之积,则称该数列为型数列。
(1)若数列是首项的型数列,求的值;
(2)证明:任何项数不小于3的递增的正整数列都不是型数列;
(3)若数列是型数列,且试求与的递推关系,并证明对恒成立。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com