解:(1)=sin2x-1-2tsinx+4t3+t2-3t+4=sin2x-2tsinx+t2+4t3-3t+3=(sinx-t)2+4t3-3t+3.
由(sinx-t)2≥0,|t|≤1,故当sinx=t时,f(x)有最小值g(t),即
g(t)=4t3-3t+3.
(2)我们有g'(t)=12t2-3=3(2t+1)(2t-1),-1<t<1.
列表如下:
t | (-1,-) | - | (-,) | (,1) | |
g'(t) | + | 0 | - | 0 | + |
G(t) | ↗ | 极大值g(-) | ↘ | 极小值g() | ↗ |
由此可见,g(t)在区间(-1,-)和(,1)单调增加,在区间(-,)单调减小,极小值为g()=2,
又g(-1)=-4-(-3)+3=2
故g(t)在[-1,1]上的最小值为2
注意到:对任意的实数a,=∈[-2,2]
当且仅当a=1时,=2,对应的t=-1或,
故当t=-1或时,这样的a存在,且a=1,使得g(t)≥成立.
而当t∈(-1,1]且t≠时,这样的a不存在.
科目:高中数学 来源:南京师范大学附属扬子中学2008届高三年级数学课堂限时训练(三角函数和向量部分六) 题型:044
设函数
,x∈R,其中|t|≤1,将f(x)的最小值记为g(t)(1)求g(t)的表达式;
(2)讨论g(t)在区间(-1,1)内的单调性并求极值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2012-2013学年宁夏银川一中高三(下)第六次月考数学试卷(文科)(解析版) 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2010年安徽省淮南二中高三(上)第二次月考数学试卷(文科)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com