精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=2sin2x-sin2x,则函数f(x)的对称中心可以是(  )
A.$(-\frac{π}{8},0)$B.$(-\frac{π}{4},0)$C.$(-\frac{π}{8},1)$D.$(-\frac{π}{4},1)$

分析 首先将已知函数解析式化简,然后求其对称中心.

解答 解:函数f(x)=2sin2x-sin2x=1-cos2x-sin2x=1-$\sqrt{2}$sin(2x+$\frac{π}{4}$),令2x+$\frac{π}{4}$=kπ,k∈Z,得到x=$\frac{kπ}{2}-\frac{π}{8}$,所以函数f(x)的对称中心($\frac{kπ}{2}-\frac{π}{8}$,1),k∈Z;
所以函数f(x)的对称中心可以是(-$\frac{π}{8}$,1);
故选C.

点评 本题考查了三角函数式的化简以及利用正弦函数的性质求对称中心;关键是正确化简三角函数式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知点$(\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{4})$在幂函数y=f(x)的图象上,则f(-2)=-8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列各式比较大小正确的是(  )
A.1.72.5>1.73B.0.6-1>0.62C.1.70.3<0.93.1D.0.8-0.1>1.250.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.△ABC的三个内角A,B,C所对的边分别为$a,b,c,asinAsinB+b{cos^2}A=\sqrt{3}a$,则$\frac{b}{a}$的值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.复数$z=\frac{2i}{2-i}$(i为虚数单位)所对应的点位于复平面内(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}满足an+1=an+2,且a2=3,bn=ln(an)+ln(an+1).
(1)求数列{bn}的通项公式;
(2)令${c_n}={e^{-{b_n}}}$,求数列{cn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设4a=5b=m,且$\frac{1}{a}$+$\frac{2}{b}$=1.
(1)求a,b的值(用m表示);
(2)求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的首项a1=1,数列{bn}是公比为16的等比数列,且${b_n}={2^{a_n}}$.
(1)求数列{an}的通项公式an及前n项和Sn
(2)设${c_n}=\frac{S_n}{n}•{2^{n-1}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.中心在坐标原点,对称轴为坐标轴的双曲线C过点$P(3,\sqrt{5})$,离心率为$\sqrt{2}$.
(1)求双曲线C的方程;
(2)过C的左顶点A引C的一条渐近线的平行线l,求直线l与另一条渐近线及x轴围成的三角形的面积.

查看答案和解析>>

同步练习册答案