精英家教网 > 高中数学 > 题目详情

【题目】分形几何学是数学家伯努瓦·曼德尔布罗在世纪年代创立的一门新的数学学科,它的创立为解决传统科学众多领域的难题提供了全新的思路.按照如图所示的分形规律可得如图乙所示的一个树形图:

若记图乙中第行白圈的个数为,则__________

【答案】

【解析】根据图甲所示的分形规律,1个白圈分形为2个白圈1个黑圈,1个黑圈分形为1个白圈2个黑圈,第一行记为(1,0),第二行记为(2,1),第三行记为(5,4),第四行的白圈数为2×5+4=14;黑圈数为5+2×4=13,第四行的“坐标”为(14,13);第五行的“坐标”为(41,40),各行白圈数乘以2,分别是2,4,10,28,82,即1+1,3+1,9+1,27+1,81+1,可以归纳出第n行的白圈数为(若考生未写建议也给5分).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知如图,圆、椭圆均经过点M,圆的圆心为,椭圆的两焦点分别为.

(Ⅰ)分别求圆和椭圆的标准方程;

(Ⅱ)过作直线与圆交于两点,试探究是否为定值?若是定值,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在[-1,1]上的奇函数,当x∈[-1,0]时,函数的解析式为f(x)= (a∈R).

(1)试求a的值;

(2)写出f(x)在[0,1]上的解析式;

(3)求f(x)在[0,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数有零点,求实数的取值范围;

(2)证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车是城市慢行系统的一种模式创新,对于解决民众出行“最后一公里”的问题特别见效,由于停取方便、租用价格低廉,各色共享单车受到人们的热捧.某自行车厂为共享单车公司生产新样式的单车,已知生产新样式单车的固定成本为20000元,每生产一件新样式单车需要增加投入100元.根据初步测算,自行车厂的总收益(单位:元)满足分段函数,其中 是新样式单车的月产量(单位:件),利润总收益总成本.

(1)试将自行车厂的利润元表示为月产量的函数;

(2)当月产量为多少件时自行车厂的利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费需了解年宣传费 (单位:千元)对年销售量 (单位:t)和年利润 (单位:千元)的影响.对近8年的年宣传费和年销售量 (i128)数据作了初步处理得到右面的散点图及一些统计量的值.

46.6

563

6.8

289.8

1.6

1469

108.8

表中

(1)根据散点图判断, 哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)

(2)根据(1)的判断结果及表中数据,建立关于的回归方程;

(3)已知这种产品的年利润的关系为.根据(2)的结果回答下列问题:

①年宣传费=49时,年销售量及年利润的预报值是多少?

②年宣传费为何值时,年利润的预报值最大?

附:对于一组数据 其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,嵩山上原有一条笔直的山路BC,现在又新架设了一条索道AC,小李在山脚B处看索道AC,发现张角∠ABC=120°;从B处攀登400米到达D处,回头看索道AC,发现张角∠ADC=150°;从D处再攀登800米方到达C处,则索道AC的长为________米.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】5名男生4名女生站成一排,求满足下列条件的排法:

(1)女生都不相邻有多少种排法?

(2)男生甲、乙、丙排序一定(只考虑位置的前后顺序),有多少种排法?

(3)男甲不在首位,男乙不在末位,有多少种排法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数在区间上是增函数,求实数的取值范围;

(2)若是函数的极值点,求函数上的最大值;

(3)在(2)的条件下,是否存在实数,使得函数的图象与函数的图象恰有个交点?若存在,请求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案