精英家教网 > 高中数学 > 题目详情
3.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,F为椭圆的右焦点,点A,B分别为椭圆的上下顶点,过点B作AF的垂线,垂足为M.
(1)若$a=\sqrt{2}$,△ABM的面积为1,求椭圆方程;
(2)是否存在椭圆,使得点B关于直线AF对称的点D仍在椭圆上.若存在,求椭圆的离心率的值;若不存在,说明理由.

分析 (1)直线$AF:y=-\frac{b}{c}x+b$,直线BM:y=$\frac{c}{b}$x-b.联立可得M.利用S△ABM=$\frac{1}{2}2b•$xM,$a=\sqrt{2}$,a2=b2+c2
(2)得出M,D.代入椭圆方程化简,考察其方程是否有解即可得出.

解答 解:(1)直线$AF:y=-\frac{b}{c}x+b$,直线BM:y=$\frac{c}{b}$x-b.
联立可得M$(\frac{2{b}^{2}c}{{a}^{2}},\frac{b(2{c}^{2}-{a}^{2})}{{a}^{2}})$.
∴S△ABM=$\frac{1}{2}2b•$xM=$\frac{1}{2}×2b×\frac{2{b}^{2}c}{{a}^{2}}$=1.
又∵$a=\sqrt{2}$,∴b=c=1.
∴椭圆方程为$\frac{x^2}{2}+{y^2}=1$.
(2)∵M$(\frac{2{b}^{2}c}{{a}^{2}},\frac{b(2{c}^{2}-{a}^{2})}{{a}^{2}})$,
∴D$(\frac{4{b}^{2}c}{{a}^{2}},\frac{b(4{c}^{2}-{a}^{2})}{{a}^{2}})$.
代入椭圆方程得$\frac{16{b}^{4}{c}^{2}}{{a}^{6}}$+$\frac{(4{c}^{2}-{a}^{2})^{2}}{{a}^{4}}$=1,
化简得2e4-2e2+1=0,
此方程无解,
∴不存在这样的椭圆,使得点B关于直线AF对称的点D仍在椭圆上.

点评 本题考查了椭圆的标准方程及其性质、相互垂直的直线斜率之间的关系、对称性问题,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.在y=2x2上有一点P,它到A(1,3)的距离与它到焦点的距离之和最小,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知角θ的终边上一点坐标为(3,-4),则cos(π-2θ)的值是$\frac{7}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设集合U=R,A={x||x-1|<1},B={x|x2+x-2<0};
(1)求:A∩B,(∁UA)∪B;
(2)设集合C={x|2-a<x<a},若C⊆(A∪B),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数$f(x)=\left\{{\begin{array}{l}{x{e^x}+\frac{1}{e},x≤0}\\{{x^2}-2x,x>0}\end{array}}\right.$,若函数y=f(f(x)-a)有四个零点,则实数a的所有可能取值构成的集合是(1,1+$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.正整数x1、x2、…、x7满足x6=144,xn+3=xn+2(xn+1+xn),n=1,2,3…,求x7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线的方程为x2=8y,F是焦点,点A(-2,4),在此抛物线上求一点P,使|PF|+|PA|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),F1,F2分别为椭圆的左右焦点,M为椭圆上任意一点,且2|F1F2|-|MF1|=|MF2|,过椭圆焦点垂直于长轴的半弦长为$\frac{3}{2}$.
(1)求椭圆E的方程;
(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E恒有两个交点A,B,且$\overrightarrow{OA}⊥\overrightarrow{OB}$,求出该圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如果实数x,y满足条件$\left\{\begin{array}{l}{x-y≥0}\\{2x+y-2≥0}\\{x-1≤0}\end{array}\right.$,则z=$\frac{y+1}{x}$的取值范围是[1,$\frac{5}{2}$].

查看答案和解析>>

同步练习册答案