精英家教网 > 高中数学 > 题目详情
(2009•闸北区二模)如图,在四棱锥O-ABCD中,底面ABCD是边长为2的正方形,OA⊥底面ABCD,OA=2,M为OA的中点.
(Ⅰ)求异面直线OC与MD所成角的大小;
(Ⅱ)求点M到平面OCD的距离.
分析:(Ⅰ)求异面直线所成的角,可以做适当的平移,把异面直线转化为相交直线,然后在相关的三角形中借助正弦或余弦定理解出所求的角.平移时主要是根据中位线和中点条件,做出角,再求出角.
(Ⅱ)可以先转化,当由点向平面引垂线发生困难时,可利用线面平行或面面平行转化为直线上(平面上)其他点到平面的距离.
解答:解:(Ⅰ)设线段AC的中点为E,连接ME,
则∠EMD为异面直线OC与MD所成的角(或其补角)
由已知,可得DE=
2
,EM=
3
,MD=
5

2
2
+
3
2
=
5
2

∴△DEM为直角三角形
∴tan∠EMD=
DE
EM
=
2
3
=
6
3

∴∠EMD=arctan
6
3

所以异面直线OC与MD所成角的大小arctan
6
3

(Ⅱ)作MF⊥OD于F,
∵OA⊥CD且AD⊥CD,
∴CD⊥平面ADO
∴CD⊥MF
∴MF⊥平面OCD
所以点M到平面OCD的距离ME=
2
2
点评:本题主要考查直线与直线的位置关系、异面直线所成角及点到平面的距离等知识,考查空间想象能力和思维能力,利用综合法解决立体几何问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•闸北区二模)函数y=
log0.5x
的定义域为
(0,1]
(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闸北区二模)方程|sin
πx
2
|=
x
-1
的实数解的个数为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闸北区二模)设实数x,y满足条件
x≥0
x≤y
x+2y≤3
则z=2x-y的最大值是
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闸北区二模)若cotα=-
1
2
,则tan2α的值为
4
3
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闸北区二模)增广矩阵为
1-25
318
的线性方程组的解用向量的坐标形式可表示为
(3,-1)
(3,-1)

查看答案和解析>>

同步练习册答案