精英家教网 > 高中数学 > 题目详情
18.已知x,y满足不等式组$\left\{\begin{array}{l}{x+2y≤8}\\{2x+y≤8}\\{x≥0}\\{y≥0}\end{array}\right.$则求目标函数z=6x+2y-1的最小值.

分析 作出可行域,变形目标函数,平移直线y=-3x可得结论.

解答 解:作出不等式组$\left\{\begin{array}{l}{x+2y≤8}\\{2x+y≤8}\\{x≥0}\\{y≥0}\end{array}\right.$所对应的可行域(如图阴影),
变形目标函数可得y=-3x+$\frac{z+1}{2}$,
平移直线y=-3x可得当直线经过点O(0,0)时截距取最小值,
故目标函数z=6x+2y-1的最小值为-1.

点评 本题考查简单线性规划,准确作图是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.在直角坐标系中,已知A(-1,3),$\overrightarrow{AB}$=(6.-2),则点B的坐标为(5,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点为F,右顶点为A,上顶点为B,O为坐标原点,若BF⊥BA,则cos2∠BFO=2-$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.用适当的集合符号填空.
(1)(1,2)∈{(x,y)|y=x+1};
(2)2$+\sqrt{5}$∉{x|x≤2$+\sqrt{3}$};
(3){-1,1}?{x|x3-x=0}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设A={1,2,4,5,9},B={4,6,7,8,10},求A∩B,A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=a-sinx x∈(0,$\frac{5π}{2}$)的图象与过点(0,1)且平行于x轴的直线有两个交点,则实数a的取值范围是(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.矩形的长为12.宽为8,与它周长相等的正方形的面积是(  )
A.96B.48C.40D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)已知集合P={x|x2+x-6=0},S={x|ax+1=0},且S⊆P,求由实数a的所有可取值组成的集合;
(2)已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},且B⊆A,求由实数m的所有可取值组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.计算:($\frac{16}{81}$)${\;}^{-\frac{3}{4}}$+lg$\frac{3}{7}$+lg70+$\sqrt{(lg3)^{2}-lg9+1}$=$\frac{43}{8}$.

查看答案和解析>>

同步练习册答案