精英家教网 > 高中数学 > 题目详情
已知抛物线y=x2+4ax-4a+3,y=x2+2ax-2a至少有一条与x轴相交,求实数a的取值范围.
由题意得:
方程x2+4ax-4a+3=0有两个不相等的实数解⇒△1=16a2-4(-4a+3)>0(4分)
⇒-
3
2
<a<
1
2
(5分)
方程x2+2ax-2a=0有实数解⇒△2=4a2+8a>0(9分)
⇒-2<a<0(10分)
所以,所求实数a的取值范围是(-∞,-
3
2
)∪(0,+∞)(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

有一隧道,内设双行线公路,同方向有两个车道(共有四个车道),每个车道宽为3m,此隧道的截面由一个长方形和一抛物线构成,如图所示,为保证安全,要求行驶车辆顶部(设车辆顶部为平顶)与隧道顶部在竖直方向上高度之差至少为0.25m,靠近中轴线的车道为快车道,两侧的车道为慢车道,则车辆通过隧道时,慢车道的限制高度为______.(精确到0.1m)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,设椭圆动直线与椭圆只有一个公共点,且点在第一象限.
(1)已知直线的斜率为,用表示点的坐标;
(2)若过原点的直线垂直,证明:点到直线的距离的最大值为.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设AB为抛物线y2=x上的动弦,且|AB|=2,则弦AB的中点M到y轴的最小距离为(  )
A.2B.
3
4
C.1D.
5
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知A、B、C、D分别为过抛物线y2=4x焦点F的直线与该抛物线和圆(x-1)2+y2=1的交点,则|AB|•|CD|=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若拋物线y2=2px(p>0)的焦点到准线的距离为4,则其焦点坐标为(  )
A.(4,0)B.(2,0)C.(0,2)D.(1,0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在直角坐标系中任给一条直线,它与抛物线y2=2x交于A、B两点,则
OA
OB
的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F为抛物线y2=2x的焦点,A、B、C为抛物线上三点,若F为△ABC的重心,则|
FA
|+|
FB
|+|
FC
|的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一座抛物线拱桥在某时刻水面的宽度为52米,拱顶距离水面6.5米.
(1)建立如图所示的平面直角坐标系xoy,试求拱桥所在抛物线的方程;
(2)若一竹排上有一4米宽6米高的大木箱,问此木排能否安全通过此桥?

查看答案和解析>>

同步练习册答案