分析 利用椭圆的参数方程与直线的方程分别求出|x1-x2|与|y1-y2|的最小值,比较即可得出.
解答 解:①取x1=x2∈[0,2$\sqrt{2}$],
则y1=$\sqrt{2-\frac{{x}_{1}^{2}}{4}}$,y2=$\frac{1}{2}(7-{x}_{1})$
则|x1-x2|+|y1-y2|=|y1-y2|=$\frac{1}{2}(7-{x}_{1})$-$\sqrt{2-\frac{{x}_{1}^{2}}{4}}$=$\frac{7}{2}$-$(\frac{1}{2}{x}_{1}+\sqrt{2-\frac{{x}_{1}^{2}}{4}})$,
令x1=2$\sqrt{2}$cosθ$(θ∈[0,\frac{π}{2}])$,则|y1-y2|=$\frac{7}{2}$-$(\sqrt{2}cosθ+\sqrt{2}sinθ)$=$\frac{7}{2}$-2$sin(θ+\frac{π}{4})$≥$\frac{7}{2}$-2=$\frac{3}{2}$.
②取y1=y2∈[0,$\sqrt{2}$],
则x1=$\sqrt{8-4{y}_{1}^{2}}$,x2=7-2y2.
则|x1-x2|+|y1-y2|=|x1-x2|=7-2y1-$\sqrt{8-4{y}_{1}^{2}}$=7-(2y1+$\sqrt{8-4{y}_{1}^{2}}$),
令y1=$\sqrt{2}$sinθ$(θ∈[0,\frac{π}{2}])$,则|x1-x2|=7-(2$\sqrt{2}$sinθ+2$\sqrt{2}$cosθ)=7-4$sin(θ+\frac{π}{4})$≥3.
综上可得:|x1-x2|+|y1-y2|的最小值是$\frac{3}{2}$.
故答案为:$\frac{3}{2}$.
点评 本题考查了椭圆的参数方程、“换元法”、三角函数的单调性、和差公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 、①②③ | B. | ①③ | C. | ①②④ | D. | ③ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 只能是x=-1 | |
B. | 可能是y轴 | |
C. | 可能在y轴右侧且在直线x=2的左侧 | |
D. | 可能在y轴左侧且在直线x=-2的右侧 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com