【题目】2013年1月,北京经历了59年来雾霾天气最多的一个月.据气象局统计,北京市2013年1月1日至1月30日这30天里有26天出现雾霾天气,《环境空气质量指数(AQI)技术规定(试行)》如表1:
表1 空气质量指数AQI分组表
AQI指数M | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | >300 |
级别 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | Ⅵ |
状况 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
表2是某气象观测点记录的连续4天里AQI指数M与当天的空气水平可见度y(km)的情况,表3是某气象观测点记录的北京市2013年1月1日至1月30日的AQI指数频数分布表.
表2 AQI指数M与当天的空气水平可见度y(km)的情况
AQI指数M | 900 | 700 | 300 | 100 |
空气水平可见度y(km) | 0.5 | 3.5 | 6.5 | 9.5 |
表3 北京市2013年1月1日至1月30日AQI指数频数分布表
AQI指数M | [0,200) | [200,400) | [400,600) | [600,800) | [800,1000] |
频数 | 3 | 6 | 12 | 6 | 3 |
(1)设x=,根据表2的数据,求出y关于x的线性回归方程.
(参考公式:,.)
(2)小王在北京开了一家洗车店,经小王统计:当AQI指数低于200时,洗车店平均每天亏损约2000元;当AQI指数在200至400时,洗车店平均每天收入约4000元;当AQI指数不低于400时,洗车店平均每天收入约7000元.
①估计小王的洗车店在2013年1月份平均每天的收入;
②从AQI指数在[0,200)和[800,1000]内的这6天中抽取2天,求这2天的收入之和不低于5000元的概率.
【答案】(1)=-x+.(2)①5500元,②.
【解析】
(1)根据题中的数据及给出的公式求出和后可得回归方程.(2)①由题意可得在1月份30天中有3天洗车店每天亏损约2000元,有6天每天收入约4000元,有21天每天收入约7000元,然后求出平均数即为所求;②根据古典概型的概率和对立事件的概率求解.
(1)因为==5,==5,
=92+72+32+12=140,
所以==-,
故=5-×5=,
所以y关于x的线性回归方程是=-x+.
(2)①根据表3可知,在1月份30天中有3天洗车店每天亏损约2000元,有6天每天收入约4000元,有21天每天收入约7000元,
故1月份平均每天的收入约为×(-2000×3+4000×6+7000×21)=5500(元).
②记AQI指数在[0,200)内的3天为A1,A2,A3,AQI指数在[800,1000]内的3天为B1,B2,B3,则从[0,200)和[800,1000]内的这6天中抽取2天的所有情况有(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,B3),(A2,A3),(A2,B1),(A2,B2),(A2,B3),(A3,B1),(A3,B2),(A3,B3),(B1,B2),(B1,B3),(B2,B3),共15种,
其中满足这2天的收入之和低于5000元的情况有(A1,A2),(A1,A3),(A2,A3),共3种,
故由古典概型的概率计算公式可得,这2天的收入之和低于5000元的概率为=.
由对立事件的概率计算公式得,这2天的收入之和不低于5000元的概率为1-=.
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD,则平面PQC与平面DCQ的位置关系为( )
A. 平行 B. 垂直
C. 相交但不垂直 D. 位置关系不确定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设{an}和{bn}是两个等差数列,记cn=max{b1﹣a1n,b2﹣a2n,…,bn﹣ann}(n=1,2,3,…),其中max{x1 , x2 , …,xs}表示x1 , x2 , …,xs这s个数中最大的数.(13分)
(1)若an=n,bn=2n﹣1,求c1 , c2 , c3的值,并证明{cn}是等差数列;
(2)证明:或者对任意正数M,存在正整数m,当n≥m时, >M;或者存在正整数m,使得cm , cm+1 , cm+2 , …是等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)= ,其中集合D={x|x= ,n∈N*},则方程f(x)﹣lgx=0的解的个数是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于给定的正整数k,若数列{an}满足:an﹣k+an﹣k+1+…+an﹣1+an+1+…an+k﹣1+an+k=2kan对任意正整数n(n>k)总成立,则称数列{an}是“P(k)数列”.
(Ⅰ)证明:等差数列{an}是“P(3)数列”;
(Ⅱ)若数列{an}既是“P(2)数列”,又是“P(3)数列”,证明:{an}是等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1= ,∠BAD=120°.
(Ⅰ)求异面直线A1B与AC1所成角的余弦值;
(Ⅱ)求二面角B﹣A1D﹣A的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)某圆锥的侧面展开图为圆心角为,面积为的扇形,求该圆锥的表面积和体积.
(2)已知直三棱柱的底面是边长为的正三角形,且该三棱柱的外接球的表面积为,求该三棱柱的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为椭圆()的一个焦点,过原点的直线与椭圆交于、两点,且,△的面积为。
(1)求椭圆的离心率;
(2)若,过点且不与坐标轴垂直的直线交椭圆于、两点,线段的垂直平分线与轴交于点,求点横坐标的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com