精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,直线的参数方程为为参数),圆的参数方程为为参数)

1)求的普通方程;

2)设点,直线与曲线相交于两点,求的值.

【答案】1的普通方程为的普通方程为;(2.

【解析】

1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.

2)由在直线上,求出直线的参数方程,设对应的参数为,将直线的参数方程与圆的方程进行联立,可求出,从而可求的值.

1)由题意可得,故的参数方程为为参数),

的参数方程为为参数),

消去参数,得的普通方程为

消去参数,得的普通方程为.

2)由题意知, 在直线上,的参数方程为 ,设对应的参数为

的参数方程与圆的普通方程进行联立,整理得

,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某城市对一项惠民市政工程满意程度(分值:分)进行网上调查,有2000位市民参加了投票,经统计,得到如下频率分布直方图(部分图):

现用分层抽样的方法从所有参与网上投票的市民中随机抽取位市民召开座谈会,其中满意程度在的有5人.

1)求的值,并填写下表(2000位参与投票分数和人数分布统计);

满意程度(分数)

人数

2)求市民投票满意程度的平均分(各分数段取中点值);

3)若满意程度在5人中恰有2位为女性,座谈会将从这5位市民中任选两位发言,求男性甲或女性乙被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年初,我国突发新冠肺炎疫情.面对“突发灾难”,举国上下心,继解放军医疗队于除夕夜飞抵武汉,各省医疗队也陆续增援,纷纷投身疫情防控与病人救治之中.为分担“逆行者”的后顾之忧,某大学学生志愿者团队开展“爱心辅学”活动,为抗疫前线工作者子女在线辅导功课.现随机安排甲、乙、丙3名志愿者为某学生辅导数学、物理、化学、生物4门学科,每名志愿者至少辅导1门学科,每门学科由1名志愿者辅导,则数学学科恰好由甲辅导的概率为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的单调区间;

2)若函数在区间内有且只有一个极值点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四面体中,,,,为其外接球球心,,,所成的角分别为,,.有下列结论:

①该四面体的外接球的表面积为,

②该四面体的体积为10,

其中所有正确结论的编号为___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高三数学考试中,一般有一道选做题,学生可以从选修4-4和选修4-5中任选一题作答,满分10.某高三年级共有1000名学生参加了某次数学考试,为了了解学生的作答情况,计划从该年级1000名考生成绩中随机抽取一个容量为10的样本,为此将1000名考生的成绩按照随机顺序依次编号为000~999.

1)若采用系统抽样法抽样,从编号为000~999的成绩中随机确定的编号为026,求样本中的最大编号.

2)若采用分层抽样法,按照学生选择选修4-4或选修4-5的情况将成绩分为两层,已知该校共有600名考生选择了选修4-4400名考生选择了选修4-5,在选取的样本中,选择选修4-4的平均得分为6分,方差为2,选择选修4-5的平均得分为5分,方差为0.75.用样本估计该校1000名考生选做题的平均得分和得分的方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,过焦点且垂直于长轴的弦长为.

(1)已知点是椭圆上两点,点为椭圆的上顶点,的重心恰好是椭圆的右焦点,求

在直线的斜率;

(2)过椭圆的右焦点作直线,直线与椭圆分别交于点,直线与椭圆分别交于点

,求四边形的面积最小时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点M是圆C:(x+12+y28上的动点,定点D10),点P在直线DM上,点N在直线CM上,且满足20,动点N的轨迹为曲线E

1)求曲线E的方程;

2)若AB是曲线E的长为2的动弦,O为坐标原点,求AOB面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用黑白两种颜色随机地染如图所示表格中6个格子,每格子染一种颜色,并且从左往右数,不管数到哪个格子,总有黑色格子不少于白色格子的染色方法种数为________

查看答案和解析>>

同步练习册答案