精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=ln(1+x)-$\frac{ax}{x+1}$(a>0)
(Ⅰ)若x=1是函数f(x)的一个极值点,求a的值;
(Ⅱ)若f(x)≥0在[0,+∞)上恒成立,求a的取值范围;
(Ⅲ)证明:${({\frac{2015}{2016}})^{2016}}<\frac{1}{e}$(e为自然对数的底数).

分析 (Ⅰ)求出函数的导数,得到关于a的方程,解出即可;
(Ⅱ)问题转化为f(x)min≥0,根据函数的单调性,通过讨论a的范围求出a的具体范围即可;
(Ⅲ)不等式两边取对数,得到ln(1+$\frac{1}{2015}$)-$\frac{1}{1+2015}$>0,结合函数的单调性证明即可.

解答 解:(Ⅰ)∵$f(x)=ln(1+x)-\frac{ax}{x+1}(a>0)$,
∴${f^'}(x)=\frac{x+1-a}{{{{(x+1)}^2}}}$,
∵x=1是函数f(x)的一个极值点,
f′(1)=0即a=2;
(Ⅱ)∵f(x)≥0在[0,+∞)上恒成立,∴f(x)min≥0,
当0<a≤1时,f′(x)≥0在[0,+∞)上恒成立,
即f(x)在[0,+∞)上为增函数,
∴f(x)min=f(0)=0成立,即0<a≤1,
当a>1时,令f′(x)≥0,则x>a-1,
令f′(x)<0,则0≤x<a-1,
即f(x)在[0,a-1)上为减函数,在(a-1,+∞)上为增函数,
∴f(x)min=f(a-1)≥0,又f(0)=0>f(a-1),则矛盾.
综上,a的取值范围为(0,1].
(Ⅲ)要证${({\frac{2015}{2016}})^{2016}}<\frac{1}{e}$,只需证${({\frac{2016}{2015}})^{2016}}>e$,
两边取自然对数得,$2016×ln\frac{2016}{2015}>1$$?ln\frac{2016}{2015}>\frac{1}{2016}$,
?ln$\frac{2016}{2015}$-$\frac{1}{2016}$>0?ln(1+$\frac{1}{2015}$)-$\frac{1}{1+2015}$>0,
由(Ⅱ)知a=1时,f(x)=ln(1+x)-$\frac{x}{x+1}$在[0,+∞)单调递增,
又$\frac{1}{1+2015}$>0,f(0)=0,
∴f($\frac{1}{2015}$)=ln$\frac{1}{1+2015}$-$\frac{1}{1+2015}$>f(0)=0,
${({\frac{2015}{2016}})^{2016}}<\frac{1}{e}$成立.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及不等式的证明,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,AD,CF分别是△ABC的中线和高线,PB,PC是△ABC外接圆O的切线,点E是PA与圆O的交点.
(1)求证:AC•CD=AF•PC;
(2)求证:DC平分∠ADE.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,已知BC=6,C=45°,cosA=$\frac{4}{5}$,则△ABC的面积为21.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{{{{(x-a)}^2}}}{lnx}$(其中a为常数).
(Ⅰ)当a=0时,求函数的单调区间;
(Ⅱ)a≥$\frac{1}{2}$且函数f(x)有3个极值点,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某时间段车流量与PM2.5浓度的数据如表:
时间周一周二周三周四周五
车流量x(万辆)100102108114116
浓度y(微克)7880848890
根据上表数据,用最小二乘法求出y与x的线性回归方程是(  )
参考公式:b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b•$\overline{x}$;参考数据:$\overline{x}$=108,$\overline{y}$=84.
A.$\hat y$=0.62x+7.24B.$\hat y$=0.72x+6.24C.$\hat y$=0.71x+6.14D.$\hat y$=0.62x+6.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知正三棱柱ABC-A1B1C1所有的棱长均为2,D是CC1的中点.
(1)求多面体ABD-A1B1C1的体积.
(2)求直线CC1与平面ABD所成角的大小.
(3)(理科)求二面角A-BD-B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某教育机构为了解我省广大师生对新高考改革方案的看法,对某市部分学校的600名师生进行调查,统计结果如下:
赞成改革不赞成改革无所谓
教师人数120y30
学生人数xz110
在这600名师生中随机抽取1人,这个人“赞成改革”且是学生的概率为0.4,已知y=$\frac{2}{3}$z
(1)现从这600名师生中用分层抽样的方法抽取60人进行问卷调查,则应抽取“不赞成改革”的教师和学生的人数各是多少?
(2)在(1)中抽取的“不赞成改革”的教师中(甲在其中),随机选出2人进行座谈,求教师甲被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如果不等式(m+1)x2+2(m+1)x+1>0对任意实数x恒成立,则实数m的取值范围是(  )
A.[-1,0)B.(-1,0)C.(-1,+∞)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某单位的迎新年活动中有一个节目,参与者掷一颗骰子连续三次,制定规则如下:
掷出的点数分为三组(1,6),(2,5),(3,4),若其中有连续两次掷出的点数在同一组,
如“1,6,3”“1,1,4”“5,3,4”等,则参与者获奖.参与者获奖的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{4}{9}$D.$\frac{5}{9}$

查看答案和解析>>

同步练习册答案