精英家教网 > 高中数学 > 题目详情
10.若中心是原点,对称轴是坐标轴的椭圆过A(4,1),B(2,2)两点,则它的方程是$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{5}$=1.

分析 设椭圆方程为mx2+ny2=1,代入两点A(4,1),B(2,2),可得m,n的方程,解方程即可得到所求椭圆的方程.

解答 解:设椭圆方程为mx2+ny2=1,
代入两点A(4,1),B(2,2),
可得16m+n=1,4m+4n=1,
解得m=$\frac{1}{20}$,n=$\frac{1}{5}$.
即有椭圆的方程为$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{5}$=1.
故答案为:$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{5}$=1.

点评 本题考查椭圆的方程的求法,注意运用待定系数法,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\left\{\begin{array}{l}{8,(x=1)}\\{f(x-1)+3,(x≥2,x∈{N}^{*})}\end{array}\right.$,求f(3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=4x5+3x3+2x+1,则f(log23)+f(lo${g}_{\frac{1}{2}}3$)=(  )
A.2B.1C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=(m2-m+1)${x}^{\frac{{m}^{2}-2m-1}{2}}$是幂函数,且图象不经过原点.
(1)求f(4)的值;
(2)解方程f(|x|)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ln(ax)(a≠0,a∈R),g(x)=$\frac{x-1}{x}$.
(Ⅰ)当a=1时,记φ(x)=f(x)-$\frac{x+1}{x-1}$,求函数φ(x)的单调区间;
(Ⅱ)若f(x)≥g(x)(x≥1)恒成立,求实数a的取值范围;
(Ⅲ) 已知对于0<λ<1,恒有$\frac{{1+{k^λ}}}{2}≤{(\frac{1+k}{2})^λ}$(k∈N*)成立;当a=1且0<λ<1时,对任意n∈N*,试比较$\sum_{k=1}^n{\frac{1}{{1+{k^λ}}}}$与f[(1+n)λ2n(1-λ)]的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知全集U=R,集合A={x|x2-3x-18≥0},B={x|$\frac{x+5}{x-14}$≤0}.
(1)求(∁UB)∩A.
(2)若集合C={x|2a<x<a+1},且B∩C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x2+2ax+2
(1)若方程f(x)=0有两不相等的正根,求a的取值范围;
(2)求f(x)在x∈[-5,5]的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合M={y|y=x2+1,x∈R},集合N={y|y=ln(x+1)+1,x∈R},则M∩N等于(  )
A.{(0,1)}B.(0,1)C.[-1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知抛物线C1:y=$\frac{1}{4}{x^2}$,圆C2:x2+(y-1)2=1,过点P(t,0)(t>0)作不过原点O的直线PA,PB分别与抛物线C1和圆C2相切,A,B为切点.
(1)求点A,B的坐标;
(2)求△PAB的面积.

查看答案和解析>>

同步练习册答案