精英家教网 > 高中数学 > 题目详情
18.已知向量$\overrightarrow{a}$=(x0-2,y0),向量$\overrightarrow{b}$=(x0+2,y0),且|$\overrightarrow{a}$|+|$\overrightarrow{b}$|=4$\sqrt{3}$,设M(x0,y0),A(-2,0),B(2,0),则|$\overrightarrow{MA}$|•|$\overrightarrow{MB}$|的最大值为(  )
A.4B.6C.8D.12

分析 由$|\overrightarrow{a}|$+|$\overrightarrow{b}$|=4$\sqrt{3}$,可得$\sqrt{({x}_{0}-2)^{2}+{y}_{0}^{2}}$+$\sqrt{({x}_{0}+2)^{2}+{y}_{0}^{2}}$=4$\sqrt{3}$.即|$\overrightarrow{MA}$|+|$\overrightarrow{MB}$|=4$\sqrt{3}$.再利用基本不等式的性质即可得出.

解答 解:∵|$\overrightarrow{a}$|+|$\overrightarrow{b}$|=4$\sqrt{3}$,
∴$\sqrt{({x}_{0}-2)^{2}+{y}_{0}^{2}}$+$\sqrt{({x}_{0}+2)^{2}+{y}_{0}^{2}}$=4$\sqrt{3}$.
∴|$\overrightarrow{MA}$|+|$\overrightarrow{MB}$|=4$\sqrt{3}$.
∴4$\sqrt{3}$=|$\overrightarrow{MA}$|+|$\overrightarrow{MB}$|$≥2\sqrt{|\overrightarrow{MA}|•|\overrightarrow{MB}|}$.
化为|$\overrightarrow{MA}$|•|$\overrightarrow{MB}$|≤12,当且仅当|$\overrightarrow{MA}$|=|$\overrightarrow{MB}$|=2$\sqrt{3}$时取等号.
∴|$\overrightarrow{MA}$|•|$\overrightarrow{MB}$|的最大值为12.
故选:D.

点评 本题考查了两点之间的距离公式、基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知f(x)=kx+b的图象过点(2,1),且b2-6b+9≤0
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若a>0,解关于x的不等式x2-(a2+a+1)x+a3+3<f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求下列各式的值:
(1)1ne-2+1ogππ:
(2)log336-log34:
(3)1g5+1g20:
(4)1og78+1og7$\frac{1}{8}$:
(5)log6$\sqrt{216}$:
(6)log0.51-log0.54
(7)1og7$\root{3}{49}$+log${\;}_{\frac{1}{2}}$$\root{4}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知log3 $\frac{1}{2}$=a,log964=b,则αb=-3log322.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知tanα=3.求4cos2α+3sin2α.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在首项为负数的等差数列{an}中,若a10+a11+a12=0,则当数列{an}的前n项和Sn取最小值时,n等于.
A.10B.10或11C.11D.9或10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.用适当符号填空:2∈N;$\sqrt{2}$∉Z;0∉∅;-2+$\sqrt{3}$∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若f(x)=x+$\frac{1}{x}$,则下列式子中正确的是(  )
A.f(-1)=0B.f(0)=0C.f(-x)=f(x)D.f($\frac{1}{x}$)=f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=(2a-1)x+b在(-∞,+∞)上是减函数,则实数a的取值范围是(-∞,$\frac{1}{2}$)(用区间表示).

查看答案和解析>>

同步练习册答案