精英家教网 > 高中数学 > 题目详情

【题目】某市场研究人员为了了解产业园引进的甲公司前期的经营状况,采集相应数据,对该公司2017年连续六个月的利润进行了统计,并绘制了相应的折线图,如图所示:

1)折线图可以看出,可用线性回归模型拟合月利润(单位:百万元)与月份代码之间的关系,求关于的线性回归方程,并预测该公司20181月份的利润;

2)甲公司新研制了一款产品,需要采购一批新型材料,现有采购成本分别为10万元包和12万元包的两种型号的新型材料可供选择,按规定每种新型材料最多可使用4个月,不同类型的新型材料损坏的时间各不相同,已知生产新型材料的企业乙对两种型号各100件新型材料进行过科学模拟测试,得到两种新型材料使用寿命频数统计如表:

使用寿命

材料类型

1个月

2个月

3个月

4个月

总计

20

35

35

10

100

10

30

40

20

100

经甲公司测算,平均每包新型材料每月可以带来5万元收入,不考虑除采购成本之外的其他成本,假设每包新型材料的使用寿命都是整数月,且以频率作为每包新型材料使用寿命的概率,如果你是甲公司的负责人,以每包新型材料产生利润的期望值为决策依据,你会选择采购哪款新型材料?

参考数据:

参考公式:回归直线方程为,其中

【答案】1)答案见解析;(2)应该采购型材料.

【解析】

1)求出回归系数,可得回归方程,即可得出结论;

2)分别计算相应的数学期望,即可得出结论.

1)由题意知,

其中

关于的线性回归方程为

20181月对应的是,则

即预测公司20181月份(即时)的利润为23百万元;

2)由频率估计概率,型材料可使用1个月,2个月,3个月、4个月的概率分别为0.20.350.350.1

型材料利润的数学期望为万元;

型材料可使用1个月,2个月,3个月、4个月的概率分别为0.10.30.40.2

型材料利润的数学期望为万元;

应该采购型材料.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx)=(m+2)是幂函数,设a=log54,b=c=0.5–0.2,则fa),fb),fc)的大小关系是

A.fa)<fb)<fcB.fb)<fc)<fa

C.fc)<fb)<faD.fc)<fa)<fb

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别是是其左右顶点,点是椭圆上任一点,且的周长为6,若面积的最大值为.

(1)求椭圆的方程;

(2)若过点且斜率不为0的直线交椭圆两个不同点,证明:直线的交点在一条定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C经过两点,且圆心在直线上.

(1)求圆C的方程;

(2)若直线经过点且与圆C相切,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着新课程改革和高考综合改革的实施,高中教学以发展学生学科核心素养为导向,学习评价更关注学科核心素养的形成和发展.为此,我市于2018年举行第一届高中文科素养竞赛,竞赛结束后,为了评估我市高中学生的文科素养,从所有参赛学生中随机抽取1000名学生的成绩(单位:分)作为样本进行估计,将抽取的成绩整理后分成五组,从左到右依次记为,并绘制成如图所示的频率分布直方图.

(1)请补全频率分布直方图并估计这1000名学生成绩的平均数(同一组数据用该组区间的中点值作代表);

(2)采用分层抽样的方法从这1000名学生的成绩中抽取容量为40的样本,再从该样本成绩不低于80分的学生中随机抽取2名进行问卷调查,求至少有一名学生成绩不低于90分的概率;

(3)我市决定对本次竞赛成绩排在前180名的学生给予表彰,授予“文科素养优秀标兵”称号.一名学生本次竞赛成绩为79分,请你判断该学生能否被授予“文科素养优秀标兵”称号.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四川省阆中中学某部根据运动场地的影响,但为尽大可能让学生都参与到运动会中来,在2018春季运动会中设置了五个项目,其中属于跑步类的两项,分别是200米和400米,另外三项分别为跳绳、跳远、跳高学校要求每位学生必须参加,且只参加其中一项,学校780名同学参加各运动项目人数统计如下条形图:

其中参加跑步类的人数所占频率为,为了了解学生身体健康与参加运动项目之间的关系,用分层抽样的方法从这780名学生中抽取13人进行分析.

1求条形图中mn的值以及抽取的13人中参加200米的学生人数;

2现从抽取的参加400米和跳绳两个项目中随机抽取4人,记其中参加400米跑的学生人数为X,求离散型随机变量X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在边长为的等边三角形中,点分别是边上的点,满足,将沿直线折到的位置. 在翻折过程中,下列结论成立的是(

A.在边上存在点,使得在翻折过程中,满足平面

B.存在,使得在翻折过程中的某个位置,满足平面平面

C.,当二面角为直二面角时,

D.在翻折过程中,四棱锥体积的最大值记为的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,点F为抛物线的焦点,焦点F到直线3x-4y+3=0的距离为d1,焦点F到抛物线C的准线的距离为d2,且

(1)抛物线C的标准方程;

(2)若在x轴上存在点M,过点M的直线l分别与抛物线C相交于P、Q两点,且为定值,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知抛物线C:的焦点为F,过F的直线交抛物线C于A,B两点.

(1)求线段AF的中点M的轨迹方程;

(2)已知△AOB的面积是△BOF面积的3倍,求直线的方程.

查看答案和解析>>

同步练习册答案