精英家教网 > 高中数学 > 题目详情
9.已知数列{an}的前n项和为Sn,且对任意正整数n,都有an=$\frac{3}{4}{S_n}$+2成立.记bn=log2an. 
(1)求数列{an}和{bn}的通项公式;
(2)设cn=$\frac{1}{{{b_n}{b_{n+1}}}}$,数列{cn}的前n项和为Tn,求证:$\frac{1}{15}≤{T_n}<\frac{1}{6}$.

分析 (1)根据数列的递推公式即可求出数列{an}为等比数列,根据对数的运算性质可得bn=2n+1,
(2)根据裂项求和求出数列{cn}的前n项和为Tn,再利用放缩法即可证明.

解答 解:(1)在${a_n}=\frac{3}{4}{S_n}+2$中,令n=1得a1=8.
因为对任意正整数n,都有${a_n}=\frac{3}{4}{S_n}+2①$成立,n≥2时,${a_{n-1}}=\frac{3}{4}{S_{n-1}}+2②$,
②-①得,${a_n}-{a_{n-1}}=\frac{3}{4}{a_{n-1}}$,所以an+1=4an
又a1≠0,所以数列{an}是以a1=8为首项,4为公比的等比数列,即${a_n}=8•{4^{n-1}}={2^{2n+1}}$,
所以${b_n}={log_2}{2^{2n+1}}=2n+1$.
(2)由题意及(1)知${c_n}=\frac{1}{(2n+1)(2n+3)}=\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$,
所以${T_n}=\frac{1}{2}[(\frac{1}{3}-\frac{1}{5})+(\frac{1}{5}-\frac{1}{7})+…+(\frac{1}{2n+1}-\frac{1}{2n+3})]=\frac{1}{2}(\frac{1}{3}-\frac{1}{2n+3})=\frac{n}{3(2n+3)}$.
由于Tn为单调增函数,则$\frac{1}{15}={T_1}≤{T_n}<\frac{1}{6}$,
故$\frac{1}{15}≤{T_n}<\frac{1}{6}$.

点评 本题考查了根据数列的递推公式求通项公式和裂项求和以及放缩法证明不等式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.执行如图所示的程序框图,若输入x为12,则输出y的值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体的直观图,其中DD1=1,AB=BC=AA1=2,若此几何体的俯视图如图2所示,则可以作为其正视图的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设$a=\sqrt{3}×\root{3}{3}×\root{6}{3}$.
(1)求$\sqrt{{{({{a^{-1}}-1})}^2}}$的值;
(2)若$\root{3}{b}×\root{6}{-b}=-a$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设向量$\overrightarrow a=(x-1,x)$,$\overrightarrow b=(x+2,x-4)$,则“$\overrightarrow a⊥\overrightarrow b$”是“x=2”的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图是一样本的频率分布直方图.若样本容量为100,则样本数据在[15,20)内的频数是30.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}的前n项和为Sn,则“数列$\left\{{\frac{S_n}{n}}\right\}$为等差数列”是“数列{an}为等差数列”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设等比数列{an}的前n项和为Sn,已知a1a2a3=8,S2n=3(a1+a3+a5+…+a2n-1)(n∈N*)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=nSn,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)=$\left\{\begin{array}{l}{1+cos\frac{πx}{2},x>1}\\{{x}^{2},0<x≤1}\end{array}\right.$函数g(x)=x$+\frac{1}{x}+a$(x>0),若存在唯一的x0,使得h(x)=min{f(x),g(x)}的最小值为h(x0),则实数a的取值范围为(  )
A.a<-2B.a≤-2C.a<-1D.a≤-1

查看答案和解析>>

同步练习册答案