精英家教网 > 高中数学 > 题目详情
18.已知等比数列{an}中,a2=$\frac{1}{3}$,公比q=$\frac{1}{3}$,Sn为{an}的前n项和.
(1)求an和Sn
(2)设bn=log3a1+log3a2+…+log3an,求数列bn的通项公式.

分析 (1)由已知条件利用等比数列的性质求出首项和公比,由此能求出an和Sn
(2)利用等比数列的通项公式和对数的运算法则,结合等比数列、等差数列的性质能求出数列{bn}的通项公式.

解答 解:(1)∵等比数列{an}中,a2=$\frac{1}{3}$,公比q=$\frac{1}{3}$,Sn为{an}的前n项和.
∴${a}_{1}=\frac{\frac{1}{3}}{\frac{1}{3}}$=1,
∴an=${a}_{1}{q}^{n-1}$=${({\frac{1}{3}})^{n-1}}$,
Sn=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$=$\frac{1-\frac{1}{{3}^{n}}}{1-\frac{1}{3}}$=$\frac{3}{2}-\frac{3}{2}{(\frac{1}{3})^n}$.
(Ⅱ)bn=log3a1+log3a2+…+log3an
=$lo{g}_{3}[1×(\frac{1}{3})×(\frac{1}{3})^{2}×…×(\frac{1}{3})^{n-1}]$
=$lo{g}_{3}[(\frac{1}{3})^{1+2+…+n-1}]$
=$lo{g}_{3}{3}^{-\frac{(n-1)(1+n-1)}{2}}$
=$-\frac{n(n-1)}{2}$.
∴bn=-$\frac{n(n-1)}{2}$.

点评 本题考查数列的通项公式、前n项和公式的求法,是中档题,解题时要认真审题,注意等差数列、等比数列的性质、对数函数的运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.正三棱台的高为3,上、下底面边长分别为2和4,求这个棱台的侧棱长和斜高.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\frac{1+lnx}{x}$在区间(a,a+$\frac{2}{3}$)(a>0)上存在极值,则实数a的取值范围是(  )
A.(0,1)B.($\frac{1}{3}$,1)C.($\frac{1}{2}$,1)D.($\frac{2}{3}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如果实数x,y满足x2+y2=4,那么$\frac{y-2}{x+3}$的最小值是(  )
A.-$\frac{12}{5}$B.-1C.-$\frac{5}{12}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.定义在R上的函数f(x)满足f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(15-x),x≤0}\\{f(x-2),x>0}\end{array}\right.$,则f(3)=4;f(f(2015))=log215.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.对于函数f(x)与g(x),如果对任意x∈D,都有|f(x)-g(x)|≤1成立,则称f(x)与g(x)是区间D上的“亲密函数”.设函数f(x)=log4(x-m),g(x)=log4$\frac{1}{x-3m}$,区间D为[m+2,m+3].
(1)若f(x)与g(x)在区间[m+2,m+3]上都有意义,求实数m的取值范围.
(2)若f(x)与g(x)是区间[m+2,m+3]上的“亲密函数”,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某海轮以30公里/小里的速度航行,在A点测得海面上油井P在南偏东60°,向北航行40分钟后到达B点,测得油井P在南偏东30°,海轮改为北偏东60°的航向再行驶40分钟到达C点,求
①PC间的距离;
②在点C测得油井的方位角是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$a={log_3}\frac{1}{2},b={2^{0.01}},c=ln\frac{1}{2}$,则a,b,c的大小关系为(  )
A.b>a>cB.b>c>aC.a>c>bD.a>b>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)化简:($\frac{b}{2{a}^{2}}$)${\;}^{3}÷(\frac{2{b}^{2}}{3a})^{0}×(-\frac{b}{a})^{-3}$;
(2)若a>0,b>0,化简:$\frac{(2{a}^{\frac{2}{3}}{b}^{\frac{1}{2}})•(-6{a}^{\frac{1}{2}}{b}^{\frac{1}{3}})}{-3{a}^{\frac{1}{6}}{b}^{\frac{5}{6}}}-(4a-1)$.

查看答案和解析>>

同步练习册答案