精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其导函数的两个零点为.

(I)求曲线在点处的切线方程;

(II)求函数的单调区间;

(III)求函数在区间上的最值.

【答案】(I);(II)增区间是 ,减区间是;(III)最大值为,最小值为.

【解析】试题分析:(I)求出,由解得,根据导数的几何意义可得切线斜率,利用点斜式可得切线方程;(II)求出得增区间, 得减区间;(III)根据(II)求出函数的极值,与区间端点出的函数值进行比较即可得结果.

试题解析:(I).

,解得

从而

所以

曲线在点处的切线方程为

.

(II)由于,当变化时, 的变化情况如下表:

0

0

单调递增

极大值

单调递减

极小值

单调递增

的单调增区间是 ,单调减区间是.

(III)由于

故函数在区间上的最大值为,最小值为.

【方法点晴】本题主要考查的是利用导数研究函数的单调性、利用导数研究函数的最值、导数的几何意义,属于难题.利用导数研究函数的单调性进一步求函数最值的步骤:①确定函数的定义域;②对求导;③令,解不等式得的范围就是递增区间;令,解不等式得的范围就是递减区间;④根据单调性求函数的极值及最值(闭区间上还要注意比较端点处函数值的大小).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数 .

(1) 关于的方程在区间上有解,求的取值范围;

(2) 当时, 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是椭圆上一点, 分别为的左、右焦点, 的面积为.

(1)求椭圆的方程;

(2)过点的直线与椭圆相交于两点,点,记直线的斜率分别为,当最大时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象在处的切线过点 .

(1)若,求函数的极值点;

(2)设是函数的两个极值点,若,证明: .(提示

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为梯形, 底面 . 

1)求证:平面 平面

2)设上的一点,满足,若直线与平面所成角的正切值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= +log2017(2﹣x)的定义域为(
A.(﹣2,1]
B.[1,2]
C.[﹣1,2)
D.(﹣1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆O:x2+y2=4.

(1)直线l1 与圆O相交于A、B两点,求|AB|;
(2)如图,设M(x1 , y1)、P(x2 , y2)是圆O上的两个动点,点M关于原点的对称点为M1 , 点M关于x轴的对称点为M2 , 如果直线PM1、PM2与y轴分别交于(0,m)和(0,n),问mn是否为定值?若是求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=1﹣ ,g(x)=ln(ax2﹣3x+1),若对任意的x1∈[0,+∞),都存在x2∈R,使得f(x1)=g(x2)成立,则实数a的最大值为(
A.2
B.
C.4
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为,并且满足,且,当时,.

1的值;

2判断函数的奇偶性,并给出证明;

3如果,求的取值范围.

查看答案和解析>>

同步练习册答案