精英家教网 > 高中数学 > 题目详情
17.已知圆O的方程为 x2+y2=9,若抛物线C过点A(-1,0),B(1,0),且以圆O的切线为准线,则抛物线C的焦点F的轨迹方程为(  )
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{8}$=1(x≠0)B.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1(x≠0)C.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{8}$=1(y≠0)D.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1(y≠0)

分析 设抛物线C的焦点为F(x,y),准线为l,过点A,B,O分别作AA′⊥l,BB′⊥l,OP⊥l,其中A′,B′,P分别为垂足,则l为圆的切线,P为切点,通过|FA|+|FB|=|AA′|+|BB′|=6>|AB|=2,说明点F的轨迹是以A,B为焦点的椭圆,求出焦点F的轨迹方程.

解答 解:设抛物线C的焦点为F(x,y),准线为l,
过点A,B,O分别作AA′⊥l,BB′⊥l,OP⊥l,
其中A′,B′,P分别为垂足,则l为圆的切线,P为切点,且|AA′|+BB′||=2|OP|=6.
因为抛物线过点A,B,所以|AA′|=|FA|,|FB|=|BB′|,
所以|FA|+|FB|=|AA′|+|BB′|=6>|AB|=2,
所以点F的轨迹是以A,B为焦点的椭圆,
且点F不在x轴上,所以抛物线C的焦点F的轨迹方程为:$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{8}=1$(y≠0),
故选:D.

点评 本题主要考查了抛物线的定义与椭圆的标准方程,考查了学生数形结合的思想及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.某公司在新年晚会上举行抽奖活动,有甲,乙两个抽奖方案供员工选择.
方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率均为$\frac{4}{5}$,第一次抽奖,若未中奖,则抽奖结束,若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖,规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,则获得1000元;若未中奖,则不能获得奖金.
方案乙:员工连续三次抽奖,每次中奖率均为$\frac{2}{5}$,每次中奖均可获得奖金400元.
(Ⅰ)求某员工选择方案甲进行抽奖所获奖金X(元)的分布列;
(Ⅱ)试比较某员工选择方案乙与选择方案甲进行抽奖,哪个方案更划算?
(Ⅲ)已知公司共有100人在活动中选择了方案甲,试估计这些员工活动结束后没有获奖的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如果一个函数f(x)满足:(1)定义域为R;(2)任意x1,x2∈R,若x1+x2=0,则f(x1)+f(x2)=0;(3)任意x∈R,若t>0,总有f(x+t)>f(x),则f(x)可以是(  )
A.y=-xB.y=3xC.y=x3D.y=log3x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设a为实数,f(x)=$\left\{\begin{array}{l}{{x}^{3},x>a}\\{\frac{1}{3}{x}^{3},x≤a}\end{array}\right.$,g(x)=ax|x-a|.
(1)若x≤a时,方程f(x)=g(x)无解,求a的范围;
(2)设函数F(x)=f(x)-g(x).
①若h(x)=F′(x),写出函数h(x)的最小值;
②当x>a时,求函数H(x)=F(x)-x的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设i是虚数单位,复数$\frac{a+2i}{1+i}$为实数,则实数a的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(Ⅰ)若不等式|x-m|<1成立的充分不必要条件为$\frac{1}{3}$<x<$\frac{1}{2}$求实数m的取值范围;
(Ⅱ)关于x的不等式|x-3|+|x-5|<a的解集不是空集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ex-ax-1,其中a为实数.
(1)若a=1,求函数f(x)的最小值;
(2)若方程f(x)=0在(0,2]上有实数解,求a的取值范围;
(3)设ak,bk(k=1,2…,n)均为正数,且a1b1+a2b2+…+anbn≤b1+b2+…+bn,求证:a1${\;}^{{b}_{1}}$a2${\;}^{{b}_{2}}$…an${\;}^{{b}_{n}}$≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线x2-y2=1,点F1,F2为其两个焦点,点P为双曲线上一点,若P F1⊥PF2,则以F1,F2为焦点且经过P的椭圆的离心率等于(  )
A..$\frac{{\sqrt{5}}}{5}$B..$\frac{{\sqrt{6}}}{3}$C..$\frac{{\sqrt{2}}}{2}$D..$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知命题p:?x∈R,x>sinx,则p的否定形式为¬p:?x∈R,x≤sinx..

查看答案和解析>>

同步练习册答案