精英家教网 > 高中数学 > 题目详情
2.已知向量$\overrightarrow a$,$\overrightarrow b$夹角为$\frac{3π}{4}$,且$\overrightarrow a=(1,1)$,$|{\overrightarrow a-2\overrightarrow b}|=\sqrt{10}$,则|$\overrightarrow b$|=2.

分析 由题意可得,∴${\overrightarrow{a}}^{2}$-4$\overrightarrow{a}•\overrightarrow{b}$+4${\overrightarrow{b}}^{2}$=10,再利用两个数量积的定义求得|$\overrightarrow b$|的值.

解答 解:向量$\overrightarrow a$,$\overrightarrow b$夹角为$\frac{3π}{4}$,且$\overrightarrow a=(1,1)$,$|{\overrightarrow a-2\overrightarrow b}|=\sqrt{10}$,
∴${\overrightarrow{a}}^{2}$-4$\overrightarrow{a}•\overrightarrow{b}$+4${\overrightarrow{b}}^{2}$=10,
即2-4•$\sqrt{2}$•|$\overrightarrow{b}$|•$\frac{\sqrt{2}}{2}$+4${|\overrightarrow{b}|}^{2}$=10,求得|$\overrightarrow b$|=2,
故答案为:2.

点评 本题主要考查了两个数量积的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F,过点F作与x轴垂直的直线l交两渐近线于A,B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$(λ,μ∈R),λμ=$\frac{1}{16}$,则该双曲线的离心率为(  )
A.$\frac{3\sqrt{2}}{2}$B.$\frac{3\sqrt{5}}{5}$C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.${(2x-\frac{1}{x})^4}$展开式中的常数项是24.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=$\left\{\begin{array}{l}{x+2,x>0}\\{{x}^{2}-1,x≤0}\end{array}\right.$,则f(f(-2))=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知抛物线C:x2=2y的焦点为F,A(x0,y0)是C上一点,|AF|=$\frac{5}{4}{y_0}$,则x0=(  )
A.1B.-1或1C.2D.-2或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数$f(x)=cosxsinx-{sin^2}x-\frac{1}{2}$
(1)求函数f(x)的最小正周期和单调递增区间;
(2)若$f(α)=\frac{{3\sqrt{2}}}{10}-1$,且$α∈(\frac{π}{8},\frac{3π}{8})$,求$f(α-\frac{π}{8})的值$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2+ax-1满足f(2016)=f(-2014),且函数g(x)=bx(b>0,且b≠1)的图象过点(2,4).
(1)求函数f(x),g(x)的解析式;
(2)函数y=f(g(x))+m+2在x∈[-3,3]上有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知sinθ+cosθ=2sinα,sin2θ=2sin2β,则(  )
A.cosβ=2cosαB.cos2β=2cos2αC.cos2β=2cos2αD.cos2β=-2cos2α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.抛物线C顶点在原点,焦点是圆x2+y2-4x=0的圆心
(Ⅰ)求抛物线C的方程
(Ⅱ)过点P(1,1)作直线l与抛物线C相交于A、B两点,且线段AB被点P平分,求直线l的方程.

查看答案和解析>>

同步练习册答案