分析 由题意可得,∴${\overrightarrow{a}}^{2}$-4$\overrightarrow{a}•\overrightarrow{b}$+4${\overrightarrow{b}}^{2}$=10,再利用两个数量积的定义求得|$\overrightarrow b$|的值.
解答 解:向量$\overrightarrow a$,$\overrightarrow b$夹角为$\frac{3π}{4}$,且$\overrightarrow a=(1,1)$,$|{\overrightarrow a-2\overrightarrow b}|=\sqrt{10}$,
∴${\overrightarrow{a}}^{2}$-4$\overrightarrow{a}•\overrightarrow{b}$+4${\overrightarrow{b}}^{2}$=10,
即2-4•$\sqrt{2}$•|$\overrightarrow{b}$|•$\frac{\sqrt{2}}{2}$+4${|\overrightarrow{b}|}^{2}$=10,求得|$\overrightarrow b$|=2,
故答案为:2.
点评 本题主要考查了两个数量积的定义,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{3\sqrt{2}}{2}$ | B. | $\frac{3\sqrt{5}}{5}$ | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | -1或1 | C. | 2 | D. | -2或2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | cosβ=2cosα | B. | cos2β=2cos2α | C. | cos2β=2cos2α | D. | cos2β=-2cos2α |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com