精英家教网 > 高中数学 > 题目详情

【题目】 (本小题满分12分)

如图, 在四面体ABOC中, , 且.

)设为的中点, 证明: 在上存在一点,使,并计算

)求二面角的平面角的余弦值。

【答案】解法一:

)在平面内作,连接

, 

的中点,则

在等腰 中,

中,

中, .

)连接 ,由知:.

又由.

在平面内的射影.

在等腰中,的中点,

根据三垂线定理,知: ,

为二面角的平面角.

在等腰中,

中, 中,.

解法二:() 取为坐标原点,分别以所在的直线为轴,轴,建立空间直角坐标系(如图),, 中点,

.

.

所以存在点 使得 .

)记平面的法向量为,则由

,得, 故可取

又平面的法向量为 ..

二面角的平面角是锐角,记为,则.

【解析】略

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是矩形,面底面,且是边长为的等边三角形, 上,且∥面BDM.

(1)求直线PC与平面BDM所成角的正弦值;

(2)求平面BDM与平面PAD所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在研究塞卡病毒(Zika virus)某种疫苗的过程中,为了研究小白鼠连续接种该种疫苗后出现症状的情况,做接种试验,试验设计每天接种一次,连续接种3天为一个接种周期.已知小白鼠接种后当天出现症状的概率为,假设每次接种后当天是否出现症状与上次接种无关.

(1)若出现症状即停止试验,求试验至多持续一个接种周期的概率;

(2)若在一个接种周期内出现3次 症状,则这个接种周期结束后终止试验,试验至多持续3个周期,设接种试验持续的接种周期数为 ,求 的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,试讨论函数的单调性;

(Ⅱ)设,当对任意的恒成立时,求函数的最大值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题:已知实数 满足约束条件,二元一次不等式恒成立,

命题:设数列的通项公式为,若,使得

(1)分别求出使命题 为真时,实数的取值范围;

(2)若命题真假相同,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个几何体的三视图如下图,大致画出它的直观图,并求出它的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求函数的极值;

(2)若函数有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的离心率为,且过点.

(1)求的方程;

(2)若动点在直线上,过作直线交椭圆两点,使得,再过作直线,证明:直线恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(2x﹣1)的定义域为[﹣1,4],则函数f(x)的定义域为(  )
A.(﹣3,7]
B.[﹣3,7]
C.(0,]
D.[0,

查看答案和解析>>

同步练习册答案