【题目】已知函数
(1)求证:
(2)若函数的图象与直线没有交点,求实数的取值范围;
(3)若函数,则是否存在实数,使得的最小值为?若存在,求出的值;若不存在,请说明理由.
【答案】(1)见解析;(2);(3)
【解析】
(1)根据,结合对数运算法则整理即可;
(2)函数的图象与直线没有交点,可转化为方程无解,进而转为函数的图象与直线y=a无交点,即可求出结果;
(3)先将化简整理,再由换元法处理即可.
(1)证明:;
(2)若函数的图象与直线没有交点,
则方程无解,即方程无解.
令,
则在上是单调减函数,又,所以,
因为函数的图象与直线y=a无交点
;
(3)由题意函数 ,
令,则,,
函数的图象开口向上,对称轴为直线,
故当,即时,当时,函数取最小值,解得:,
当,即时,当时,函数取最小值,解得:(舍去),
当,即时,当时,函数取最小值,解得:(舍去),
综上所述,存在满足条件.
科目:高中数学 来源: 题型:
【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的一个上界.已知函数, .
(1)若函数为奇函数,求实数的值;
(2)在(1)的条件下,求函数在区间上的所有上界构成的集合;
(3)若函数在上是以3为上界的有界函数,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足 an≤an+1≤3an , n∈N* , a1=1.
(1)若a2=2,a3=x,a4=9,求x的取值范围;
(2)设{an}是公比为q的等比数列,Sn=a1+a2+…an , 若 Sn≤Sn+1≤3Sn , n∈N* , 求q的取值范围.
(3)若a1 , a2 , …ak成等差数列,且a1+a2+…ak=1000,求正整数k的最大值,以及k取最大值时相应数列a1 , a2 , …ak的公差.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区年至年农村居民家庭纯收入(单位:千元)的数据如下表:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入 | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(Ⅰ)求关于的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析年至年该地区农村居民家庭人均纯收入的变化情况,并预测该地区年农村居民家庭人均纯收入.
注:,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的奇函数f(x)且满足f(1+x)=-f(3-x),且f(1)≠0,若函数g(x)=x6+f(1)cos4x-3有且只有唯一的零点,则f(2018)+f(2019)=( )
A. 1 B. C. D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在[1,+∞)上的函数f(x)= 给出下列结论: ①函数f(x)的值域为(0,8];
②对任意的n∈N,都有f(2n)=23﹣n;
③存在k∈( , ),使得直线y=kx与函数y=f(x)的图象有5个公共点;
④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在n∈N,使得(a,b)(2n , 2n+1)”
其中正确命题的序号是( )
A.①②③
B.①③④
C.①②④
D.②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种设备随着使用年限的增加,每年的维护费相应增加现对一批该设备进行调查,得到这批设备自购入使用之日起,前五年平均每台设备每年的维护费用大致如表:
年份年 | 1 | 2 | 3 | 4 | 5 |
维护费万元 |
Ⅰ求y关于t的线性回归方程;
Ⅱ若该设备的价格是每台5万元,甲认为应该使用满五年换一次设备,而乙则认为应该使用满十年换一次设备,你认为甲和乙谁更有道理?并说明理由.
参考公式:,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com