精英家教网 > 高中数学 > 题目详情
16.在等比数列{an}中,a1=-3,a2=-6,则a4的值为(  )
A.-24B.24C.±24D.-12

分析 根据等比数列{an}中,a1=-3,a2=-6,求得数列的首项与公比,即可得解.

解答 解:∵等比数列{an}中,a1=-3,a2=-6,
∴q=$\frac{{a}_{2}}{{a}_{1}}$=$\frac{-6}{-3}$=2,
∴a4=a1q3=(-3)×23=-24.
故选:A.

点评 本题主要考查了等比数列的性质,考查数列的通项公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在△ABC中,三边分别为a=2,b=3,c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,E、F、G、H分别是空间四边形ABCD四边上的中点.
(1)若BD=2,AC=6,则EG2+HF2等于多少?
(2)若AC与BD成30°的角,且AC=6,BD=4,则四边形EFGH的面积等于多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直线L:$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数),圆C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数).
(1)当α=$\frac{π}{4}$时,求直线L与圆C交点的中点坐标;
(2)证明:直线L与圆C相交,并求最短弦的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=x+\frac{a}{x}$,且f(1)=2.
(1)判断f(x)在[1,+∞)的单调性,并证明你的结论;
(2)求函数在$[{\frac{1}{2},2}]$上最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知$tanα=2,则\frac{{{{sin}^2}α-{{cos}^2}α+2}}{{2{{sin}^2}α+{{cos}^2}α}}$等于(  )
A.$\frac{13}{9}$B.$\frac{11}{9}$C.$\frac{6}{7}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某几何体的三视图如图所示,则该几何体的体积为$\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=\left\{{\begin{array}{l}{{2^x},x≤0}\\{{{log}_2}x,x>0}\end{array}}\right.$
(1)在所给的平面直角坐标系中画出函数f(x)的图象;
(2)利用图象求f(x)=$\frac{1}{2}$时x的值;
(3)当0<f(x)<$\frac{1}{2}$时,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数$f(x)={log_{\frac{1}{2}}}({x^2}-2x-3)$的单调减区间是(3,+∞).

查看答案和解析>>

同步练习册答案