精英家教网 > 高中数学 > 题目详情
12.已知集合A=$\left\{{x\left|{\left\{\begin{array}{l}{log_2}(x+2)<3\\{x^2}≤2x+15\end{array}\right.}\right.}\right\}$,B={x|m+1≤x≤2m-1}.
(1)求集合A;
(2)若B⊆A,求实数m的取值范围.

分析 (1)求使log2(x+2)<3有意义的x的范围和x2≤2x+15有意义的x的范围的交集可得集合A;
(2)根据B⊆A,建立条件关系即可求实数m的取值范围.

解答 解:(1)由题意,集合A需满足$\left\{\begin{array}{l}{8>x+2>0}\\{{x}^{2}≤2x+15}\end{array}\right.$
解得:-2<x≤5,
故得集合A={x|-2<x≤5}
(2)∵B={x|m+1≤x≤2m-1}.
要使B⊆A成立:
当B=∅时,满足题意,此时m+1>2m-1,解得:m<2.
当B≠∅时,要使B⊆A成立,需满足$\left\{\begin{array}{l}{m+1≤2m-1}\\{m+1≥-2}\\{2m-1≤5}\end{array}\right.$
解得:2≤m≤3
综上可得实数m的取值范围是(-∞,3]

点评 本题主要考查集合的基本运算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知z=2x+y,其中实数x,y满足$\left\{{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥a}\end{array}}\right.$,且z的最大值是最小值的2倍,则a的值是(  )
A.$\frac{2}{11}$B.$\frac{1}{4}$C.4D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.计算:$0.25×{(\frac{1}{2})^{-2}}+lg8+3lg5$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.函数f(x)=x2+ax+3在区间[-1,1]上的最小值为-4.求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.A,B两个工厂距一条河分别为400m和100m,A、B两工厂之间距离500m,且位于小河同侧.把小河看作一条直线,今在小河边上建一座供水站,供A,B两工厂用水,要使供水站到A,B两工厂铺设的水管长度之和最短,问供水站应建在什么地方?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(α)=$\frac{sin(π-α)cos(π+α)}{cos(2π-α)tan(π-α)}$
(1)求f(-$\frac{31π}{3}$);
(2)若2f(π+α)=f($\frac{π}{2}$+α),求$\frac{sinα+cosα}{sinα-cosα}$+cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列命题正确的是(  )
A.若a>b,则ac2>bc2B.若a>b>0,则a2>b2
C.若a>b,c<d,则 a-c<b-dD.若a<b<0,则$\frac{1}{a}<\frac{1}{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若2cos2θ+3cosθsinθ-3sin2θ=1,则tanθ=-$\frac{1}{4}$或1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设f(x)=x2-ax+2,当x∈(2,+∞)时,f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案