精英家教网 > 高中数学 > 题目详情
已知函数f(x)=3ax+1-2a在[-1,1]上存在零点x0,且x0≠±1,求实数a的取值范围.
分析:利用根的存在定理,可得f(-1)f(1)≤0,求解即可.
解答:解:当a=0时,f(x)=1,此时函数在[-1,1]上不存在零点,所以a≠0.
要使f(x)=3ax+1-2a在[-1,1]上存在零点,且x0≠±1,则有f(-1)f(1)<0,
即(3a+1-2a)(-3a+1-2a)<0,所以(a+1)(5a-1)>0,
解得a>
1
5
或a<-1.
点评:本题主要考查函数零点的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=3•2x-1,则当x∈N时,数列{f(n+1)-f(n)}(  )
A、是等比数列B、是等差数列C、从第2项起是等比数列D、是常数列

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x丨m<x-m<9}.
(1)若m=0,求A∩B,A∪B;
(2)若A∩B=B,求所有满足条件的m的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x|x<a}.
(1)若A⊆B,求实数a的取值范围;
(2)若全集U={x|x≤4},a=-1,求?UA及A∩(?UB).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
a-1
(a≠1)在区间(0,4]上是增函数,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2log2x,g(x)=log2x.
(1)当x∈[1,4]时,求函数h(x)=[f(x)+1]•g(x)的值域;
(2)如果对任意的x∈[1,4],不等式f(x2)•f(
x
)>k•g(x)
恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案