精英家教网 > 高中数学 > 题目详情
已知f(x)=3sin(2x+
π
6
).
(1)求f(x)的最小正周期;
(2)求f(x)的单调递增区间.
考点:三角函数的周期性及其求法,正弦函数的单调性
专题:三角函数的图像与性质
分析:(1)由条件利用y=Asin(ωx+)的周期等于 T=
ω
,可得结论.
(2)令2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
,求得x的范围,可得f(x)的单调递增区间.
解答: 解:(1)由f(x)=3sin(2x+
π
6
),可得函数的周期为T=
2
=π.
(2)令2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
,求得kπ-
π
3
≤x≤kπ+
π
6
,故f(x)的单调递增区间为[kπ-
π
3
,kπ+
π
6
],k∈z.
点评:本题主要考查正弦函数的周期性和单调性,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知自由落体运动的速率v=gt(g为重力加速度),则物体在下落的过程中,从t=0到t=t0所走的路程为(  )
A、
1
2
gt02
B、gt02
C、
1
3
gt02
D、
1
4
gt02

查看答案和解析>>

科目:高中数学 来源: 题型:

x≥1是x2-x≥0的(  )
A、充要条件
B、充分不必要条件
C、必要不充分条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的图象在区间[a,b]上连续不断,且函数f(x)在(a,b)内仅有一个零点,则乘积f(a)•f(b)的符号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l经过两条直线2x-y+6=0和3x+y+4=0的交点
(1)若直线l与直线3x-4y+4=0垂直,求直线l的方程
(2)若直线m与(1)中所求直线l平行,且m与l之间的距离为2,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b∈R,则“ab>0,且a>b”是“
1
a
1
b
”的(  )
A、充分而不必要条件
B、必要而不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log4(22x+1)-
1
2
x,判断并证明函数f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了测量某峰顶一颗千年松树的高(底部不可到达),我们选择与峰底E同一水平线的A,B为观测点,现测得AB=20米,点A对主梢C和主干底部D的仰角分别是40°,30°,点B对D的仰角是45°.求这棵千年松树的高(即求CD的长,结果保留整数.参考数据:sin10°=0.17,sin50°x,y,z)

查看答案和解析>>

科目:高中数学 来源: 题型:

若α是三角形的一个内角,且sinα+cosα=
1
5
,则三角形的形状为(  )
A、钝角三角形B、锐角三角形
C、直角三角形D、无法确定

查看答案和解析>>

同步练习册答案