已知函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230623940543.png)
,设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230623955603.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230623971764.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624002719.png)
.
(1)猜测并直接写出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624018822.png)
的表达式;此时若设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232306240331109.png)
,且关于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624049266.png)
的函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624080717.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624111607.png)
在区间
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624127480.png)
上的最小值为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624143290.png)
,则求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624158297.png)
的值;
(2)设数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624189415.png)
为等比数列,数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624205437.png)
满足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232306242211309.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624236479.png)
,若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624252461.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624283625.png)
,其中
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624299426.png)
,则
①当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624330383.png)
时,求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624361348.png)
;
②设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624377345.png)
为数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624189415.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624423276.png)
项和,若对于任意的正整数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624423276.png)
,都有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624470534.png)
,求实数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624486333.png)
的取值范围.
①
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624517838.png)
②
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624533522.png)
(I)先分别求出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624564709.png)
从而归纳出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624579640.png)
,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624595967.png)
.这样可得到
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232306246261016.png)
.
然后再讨论二次函数的对称轴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624642530.png)
与-1的大小关系即可.
(2)在(1)的基础上,可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232306246891171.png)
,所以数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624704456.png)
的公比为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624735476.png)
,当m=1时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624751669.png)
,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232306247671039.png)
,
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232306247821191.png)
,然后两式作差整理可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232306247981044.png)
,问题到此基本得以解决.
解:(1)∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624829694.png)
,
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232306248761024.png)
.…1分
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624579640.png)
.………………2分
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232306249231775.png)
.
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232306249381872.png)
.…………4分
ⅰ)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624969533.png)
,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624985438.png)
时,函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232306246261016.png)
在区间
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624127480.png)
上是减函数,
∴当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230625063332.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230625079912.png)
,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230625110555.png)
,该方程没有整数解.…5分
ⅱ)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230625125522.png)
,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230625141435.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230625172893.png)
,解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230625203388.png)
,综上所述,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230625203388.png)
.…6分;
(2)①由已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230625250415.png)
,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230625281453.png)
;
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230625297570.png)
,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230625313718.png)
,解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230625344574.png)
; 所以数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624189415.png)
的公比
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230625375452.png)
; ....7分当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624330383.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230625422755.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232306254371320.png)
,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230625484934.png)
…①
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232306255001084.png)
,………②,
②-①得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230625515991.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232306255471992.png)
,....8分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232306255621355.png)
.....9分
②
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232306255781678.png)
.....10分
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230625593756.png)
,所以由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624470534.png)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232306256401268.png)
,....11分
注意到,当n为奇数时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230625671914.png)
;
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624423276.png)
为偶数时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230625703965.png)
,
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230625734647.png)
最大值为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230625765361.png)
,最小值为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230625781343.png)
.....13分
对于任意的正整数n都有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232306256401268.png)
,
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230625827692.png)
,解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230624533522.png)
...14分
练习册系列答案
相关习题
科目:高中数学
来源:不详
题型:解答题
已知定义在R上的函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230705997463.png)
和数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230706060457.png)
满足下列条件:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232307060751215.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232307060911395.png)
,其中a为常数,k为非零常数.
(Ⅰ)令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230706107575.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230706122663.png)
,证明数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230706341476.png)
是等比数列;
(Ⅱ)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230706060457.png)
的通项公式;
(Ⅲ)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230706403431.png)
时,求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230706419537.png)
.
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
已知数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231525417457.png)
中各项均为正数,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231525432378.png)
是数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231525417457.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231525479290.png)
项和,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231525510843.png)
.
(1)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231525417457.png)
的通项公式
(2)对
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231525604532.png)
,试比较
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231525620761.png)
与
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231525651360.png)
的大小.
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
已知数列{a
n}满足:a
1=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231012667388.png)
,且a
n=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232310126831166.png)
(1) 求数列{a
n}的通项公式;
(2) 证明:对于一切正整数n,不等式a
1·a
2·……a
n<2·n!
查看答案和解析>>
科目:高中数学
来源:不详
题型:单选题
若两等差数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230533099456.png)
、
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230533115471.png)
前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230533130297.png)
项和分别为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230533146366.png)
、
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230533162375.png)
,满足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232305331931273.png)
,
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230533208462.png)
的值为( )
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
.(本小题满分12分) 已知等差数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230417283473.png)
满足:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230417299431.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230417314605.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230417283473.png)
的前
n项和为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230417361388.png)
.
(Ⅰ)求通项公式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230417377348.png)
及前
n项和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230417361388.png)
;
(Ⅱ)令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230417424364.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230417439503.png)
(
n![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230417470242.png)
N
*),求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230417486491.png)
的前
n项和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230417502373.png)
.
查看答案和解析>>
科目:高中数学
来源:不详
题型:单选题
在等差数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230849114457.png)
中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230849145645.png)
则公差d= ( )
查看答案和解析>>