精英家教网 > 高中数学 > 题目详情
给出下列四个结论:
①命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②“若am2<bm2,则a<b”的逆命题为真;
③已知空间直线m,n,l,则m∥n的一个必要非充分条件是m,n与l所成角相等;
④已知函数f(x)=log2x+logx2+1,
 &x∈(0,1)
,则f(x)的最大值为-1.
其中正确结论的序号是
 
分析:①由特称命题“?x∈M,p(x)”的否定形式为全称命题“?x∈M,¬p(x)”,可判断其真假;
②由逆命题概念及不等式的性质,可判断其真假;
③由空间直线夹角的概念及两直线平行的性质、判定,想象空间图形判断其真假;
④由对数性质及基本不等式,可判断其真假.
解答:解:①特称命题“?x∈R,x2-x>0”的否定是全称命题“?x∈R,x2-x≤0”,所以①正确;
②命题“若am2<bm2,则a<b”的逆命题为“若a<b,则am2<bm2”,显然若m=0结论不成立,所以②错误;
③已知空间直线m,n,l:若m,n与l所成角相等,未必有m∥n;若m∥n,则m,n与l所成角相等.
所以“已知空间直线m,n,l,则m∥n的一个必要非充分条件是m,n与l所成角相等.”是正确的,所以③正确;
④当x∈(0,1)时,log2x<0,所以f(x)=log2x+logx2+1=log2x+
1
log2x
+1≤-2+1=-1,显然当x=
1
2
时,f(x)取得最大值.
所以④正确.
故答案为①③④.
点评:此类问题是对已学数学知识的多点考查,其考查面较广,但基础性强,每一问的难度都不大,属于基础题范畴.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个结论:①函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;②函数y=k3x(k>0)(k为常数)的图象可由函数y=3x的图象经过平移得到;③函数y=
1
2
+
1
2x-1
(x≠0)是奇函数且函数y=x(
1
3x-1
+
1
2
)
(x≠0)是偶函数;④函数y=cos|x|是周期函数.其中正确结论的序号是
 
.(填写你认为正确的所有结论序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1的棱长为1,线段AC1上有两个动点E,F,且EF=
3
3
.给出下列四个结论:
①BF∥CE;
②CE⊥BD;
③三棱锥E-BCF的体积为定值;
④△BEF在底面ABCD内的正投影是面积为定值的三角形;
其中,正确结论的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥P-ABC中,D为PA的中点,O为△ABC的中心,给出下列四个结论:①OD∥平面PBC;  ②OD⊥PA;③OD⊥BC;  ④PA=2OD.其中正确结论的序号是
③④
③④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•马鞍山模拟)给出下列四个结论:
①命题''?x∈R,x2-x>0''的否定是''?x∈R,x2-x≤0''
②“若am2<bm2,则a<b”的逆命题为真;
③已知直线l1:ax+2y-1=0,l1:x+by+2=0,则l1⊥l2的充要条件是
ab
=-2

④对于任意实数x,有f(-x)=-f(x),g(-x)=g(x)且x>0时,f'(x)>0,g'(x)>0,则x<0时,f'(x)>g'(x).
其中正确结论的序号是
①④
①④
(填上所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波二模)已知平面α、β、γ、和直线l,m,且l⊥m,α⊥γ,α∩γ=m,γ∩β=l;给出下列四个结论:①β⊥γ ②l⊥α③m⊥β;④α⊥β.其中正确的是(  )

查看答案和解析>>

同步练习册答案