精英家教网 > 高中数学 > 题目详情

【题目】已知函数的最小正周期为,其图象关于直线对称.给出下面四个结论:①将的图象向右平移个单位长度后得到函数图象关于原点对称;②点图象的一个对称中心;③;④在区间上单调递增.其中正确的结论为(

A.①②B.②③C.②④D.①④

【答案】C

【解析】

先由函数周期性与对称轴,求出函数解析式为,根据三角函数的平移原则,正弦函数的对称性与单调性,逐项判断,即可得出结果.

因为函数的最小正周期为,其图象关于直线对称,

所以,解得

因为,所以,因此

①将的图象向右平移个单位长度后函数解析式为

,所以其对称中心为:,故①错;

②由,解得,即函数的对称中心为;令,则,故②正确;

,故③错;

④由

即函数的增区间为,因此在区间上单调递增.即④正确.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,空间几何体,△、△、△均是边长为2的等边三角形,平面平面,且平面平面中点.

1)证明:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直四棱柱中,四边形为平行四边形,的中点,.

1)求证:平面平面

2)求直线与直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“柯西不等式”是由数学家柯西在研究数学分析中的“流数”问题时得到的,但从历史的角度讲,该不等式应当称为柯西﹣﹣布尼亚科夫斯基﹣﹣施瓦茨不等式,因为正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式推广到完善的地步,在高中数学选修教材4﹣5中给出了二维形式的柯西不等式:a2+b2)(c2+d2ac+bd2当且仅当adbc(即)时等号成立.该不等式在数学中证明不等式和求函数最值等方面都有广泛的应用.根据柯西不等式可知函数的最大值及取得最大值时x的值分别为(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,则方程所有根的和等于(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】百鸟蛋,又称九巧板,是类似于七巧板的益智拼图.相传是纪念哥伦布所制作的蛋形拼图,故又有哥伦布蛋形拼图一称.如图,九巧板由2个不规则四边形、2个大三角形、1个小三角形、2个不规则三角形和两个小扇形组成.在拼图时必须使用所有组件,角与边可相连接,但组件不能重叠.九巧板能拼摆出一百多种飞禽图形,可说是变化无穷、极富趣味,因此也被称为百鸟朝凤拼板.已知拼图中两个大三角形(图中阴影部分)为直角边长为2的等腰直角三角形,现用随机模拟的方法来估算此九巧板的总面积,随机在九巧板内选取100个点,发现有34个点落在两个大三角形内,则此九巧板的总面积约为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD是菱形,PA=PD,∠DAB=60°.

(1)证明:ADPB.

(2)若PB=AB=PA=2,求三棱锥P-BCD的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为2分别为的中点,则以下说法错误的是(

A.平面截正方体所的截面周长为

B.存在上一点使得平面

C.三棱锥体积相等

D.存在上一点使得平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1是某县参加2007年高考的学生身高条形统计图,从左到右的各条形图表示学生人数依次记为A1A2…A10(如A2表示身高(单位:cm)在[150155内的人数].图2是统计图1中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是

A.i<6B.i<7C.i<8D.i<9

查看答案和解析>>

同步练习册答案