精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱中,

(Ⅰ)证明:点在底面上的射影必在直线上;

(Ⅱ)若二面角的大小为,求与平面所成角的正弦值.

【答案】(Ⅰ)见解析(Ⅱ)

【解析】

(Ⅰ)利用面面垂直的判定定理与性质定理证明;

(Ⅱ)以分别为轴建立空间直角坐标系.利用向量法求解可得结果.

(Ⅰ)证明:连接,如图:

因为

所以平面

所以平面平面

过点

则由面面垂直的性质定理可知平面

平面,所以重合,

所以点在底面上的射影必在直线上.

(Ⅱ)由,得是二面角的平面角,即

在平面内,过点,以分别为轴建立如图所示的空间直角坐标系.

中,由,得

所以

,所以是边长为2的等边三角形,

所以

设平面的法向量为

,即,所以

,则

所以平面的一个法向量为

与平面所成角为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数上的奇函数,其中,则下 列关于函数的描述中,其中正确的是(

①将函数的图象向右平移个单位可以得到函数的图象;

②函数图象的一条对称轴方程为

③当时,函数的最小值为

④函数上单调递增.

A.①③B.③④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,准线轴交于点,过点的直线交抛物线于两点,点在第一象限.

,求直线的方程;

,点为准线上任意一点,求证:直线的斜率成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某生物研究所为研发一种新疫苗,在200只小白鼠身上进行科研对比实验,得到如下统计数据:

未感染病毒

感染病毒

总计

未注射疫苗

30

注射疫苗

70

总计

100

100

200

现从未注射疫苗的小白鼠中任取1只,取到感染病毒的小白鼠的概率为.

)能否有的把握认为注射此种疫苗有效?

)在未注射疫苗且未感染病毒与注射疫苗且感染病毒的小白鼠中,分别抽取3只进行病例分析,然后从这6只小白鼠中随机抽取2只对注射疫苗情况进行核实,求抽到的2只均是注射疫苗且感染病毒的小白鼠的概率.

附:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,且.

(1)求证:数列为等比数列;

2)设数列的前项和为,求证: 为定值;

3)判断数列中是否存在三项成等差数列,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在党中央的正确领导下,通过全国人民的齐心协力,特别是全体一线医护人员的共同努力,新冠肺炎疫情得到了有效控制.作为集中医学观察隔离点的某酒店在疫情期间,为客人提供两种速食品—“方便面和“自热米饭”.为调查这两种速食品的受欢迎程度,酒店部门经理记录了连续10天这两种速食品的销售量,得到如下频数分布表(其中销售量单位:盒):

1

2

3

4

5

6

7

8

9

10

方便面

103

93

98

93

106

86

87

94

91

99

自热米饭

88

96

98

97

101

99

102

107

104

112

1)根据两组数据完成下面的茎叶图(填到答题卡上);

2)根据统计学知识,你认为哪种速食品更受欢迎,并简要说明理由;

3)求自热米饭销售量y关于天数t的线性回归方程,并预估第12天自热米饭的销售量(结果精确到整数).

参考数据:.

附:回归直线方程,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种治疗新型冠状病毒感染肺炎的复方中药产品的质量以其质量指标值衡量,质量指标越大表明质量越好,为了提高产品质量,我国医疗科研专家攻坚克难,新研发出两种新配方,在两种新配方生产的产品中随机抽取数量相同的样本,测量这些产品的质量指标值,规定指标值小于时为废品,指标值在为一等品,大于为特等品.现把测量数据整理如下,其中配方废品有件.

配方的频数分布表

质量指标值分组

频数

1)求的值;

2)试确定配方和配方哪一种好?(说明:在统计方法中,同一组数据常用该组区间的中点值作为代表)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某植物园内有一块圆形区域,在其内接四边形内种植了两种花卉,其中区域内种植兰花,区域内种植丁香花,对角线BD是一条观赏小道.测量可知边界

1)求观赏小道BD的长及种植区域的面积;

2)因地理条件限制,种植丁香花的边界BCCD不能变更,而边界ABAD可以调整,使得种植兰花的面积有所增加,请在BAD上设计一点P,使得种植区域改造后的新区域(四边形)的面积最大,并求出这个面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCDHKLE中,底面ABCD是边长为3的正方形,对角线ACBD相交于点O,点F在线段AH上,且BE与底面ABCD所成角为

1)求证:ACBE

2)求二面角FBED的余弦值;

3)设点M在线段BD上,且AM//平面BEF,求DM的长.

查看答案和解析>>

同步练习册答案