11£®ÒÑÖªÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t+4\sqrt{2}\end{array}\right.$£¨tÊDzÎÊý£©£¬ÒÔÔ­µãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³Ì$¦Ñ=2cos£¨¦È+\frac{¦Ð}{4}£©$£®
£¨¢ñ£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌºÍÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨¢ò£©ÉèMΪÇúÏßCÉÏÈÎÒâÒ»µã£¬Çóx+yµÄÈ¡Öµ·¶Î§£®

·ÖÎö £¨¢ñ£©°ÑÇúÏßCµÄ²ÎÊý·½³ÌºÍÖ±ÏßlµÄ¼«×ø±ê·½³Ì·Ö±ð»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬
£¨¢ò£©Éè$M£¨\frac{{\sqrt{2}}}{2}+cos¦È£¬-\frac{{\sqrt{2}}}{2}+sin¦È£©$£¬¸ù¾ÝÈý½ÇÐκ¯ÊýµÄÈ¡Öµ·¶Î§µÃµ½x+yµÄÈ¡Öµ·¶Î§£®

½â´ð £¨¢ñ£©Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t+4\sqrt{2}\end{array}\right.$£¨tÊDzÎÊý£©£¬ÏûÈ¥t£¬
¡àÖ±ÏßlµÄÆÕͨ·½³ÌΪ$x-y+4\sqrt{2}=0$£¬
¡ßÇúÏßCµÄ¼«×ø±ê·½³Ì$¦Ñ=2cos£¨¦È+\frac{¦Ð}{4}£©$£®
¡àÇúÏßCµÄÖ±½Ç×ø±êϵϵķ½³ÌΪ${£¨x-\frac{{\sqrt{2}}}{2}£©^2}+{£¨y+\frac{{\sqrt{2}}}{2}£©^2}=1$£¬
£¨¢ò£©Éè$M£¨\frac{{\sqrt{2}}}{2}+cos¦È£¬-\frac{{\sqrt{2}}}{2}+sin¦È£©$£¬
Ôòx+y=cos¦È+sin¦È=$\sqrt{2}$sin£¨¦È+$\frac{¦Ð}{4}$£©¡Ê[-$\sqrt{2}$£¬$\sqrt{2}$]£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³ÌºÍ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬ÒÔ¼°Èý½Çº¯ÊýµÄÖµÓò£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=4x5+3x3+2x+1£¬Ôòf£¨log23£©+f£¨lo${g}_{\frac{1}{2}}3$£©=£¨¡¡¡¡£©
A£®2B£®1C£®0D£®-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=x2+2ax+2
£¨1£©Èô·½³Ìf£¨x£©=0ÓÐÁ½²»ÏàµÈµÄÕý¸ù£¬ÇóaµÄÈ¡Öµ·¶Î§£»
£¨2£©Çóf£¨x£©ÔÚx¡Ê[-5£¬5]µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖª¼¯ºÏM={y|y=x2+1£¬x¡ÊR}£¬¼¯ºÏN={y|y=ln£¨x+1£©+1£¬x¡ÊR}£¬ÔòM¡ÉNµÈÓÚ£¨¡¡¡¡£©
A£®{£¨0£¬1£©}B£®£¨0£¬1£©C£®[-1£¬+¡Þ£©D£®[1£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÈôµÈ²îÊýÁÐ{an}Âú×ãa6+a7+a8£¾0£¬a6+a9£¼0£¬Ôòµ±n=7ʱ£¬{an}µÄÇ°nÏîºÍ×î´ó£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªf£¨x£©=£¨a-2£©x2+2£¨a-2£©x-4£¬
£¨¢ñ£©µ±x¡ÊRʱ£¬ºãÓÐf£¨x£©£¼0£¬ÇóaµÄÈ¡Öµ·¶Î§£»
£¨¢ò£©µ±x¡Ê[1£¬3£©Ê±£¬ºãÓÐf£¨x£©£¼0£¬ÇóaµÄÈ¡Öµ·¶Î§£»
£¨¢ó£©µ±a¡Ê£¨1£¬3£©Ê±£¬ºãÓÐf£¨x£©£¼0£¬ÇóxµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®¸´Êý£¨1-3i£©2µÄÐ鲿Ϊ£¨¡¡¡¡£©
A£®-3iB£®-6C£®-6iD£®3i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬ÒÑÖªÅ×ÎïÏßC1£ºy=$\frac{1}{4}{x^2}$£¬Ô²C2£ºx2+£¨y-1£©2=1£¬¹ýµãP£¨t£¬0£©£¨t£¾0£©×÷²»¹ýÔ­µãOµÄÖ±ÏßPA£¬PB·Ö±ðÓëÅ×ÎïÏßC1ºÍÔ²C2ÏàÇУ¬A£¬BΪÇе㣮
£¨1£©ÇóµãA£¬BµÄ×ø±ê£»
£¨2£©Çó¡÷PABµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Éèf£¨x£©=alnx-x+4£¬ÆäÖÐa¡ÊR£¬ÇúÏßy=f£¨x£©Ôڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏß´¹Ö±ÓÚyÖᣮ
£¨1£©ÇóaµÄÖµ£»
£¨2£©Çóº¯Êýf£¨x£©ÔÚ$x¡Ê[{\frac{1}{2}£¬4}]$µÄ×îÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸