精英家教网 > 高中数学 > 题目详情

【题目】已知圆的圆心在坐标原点,且与直线相切.

1)求直线被圆所截得的弦的长;

2)过点作两条与圆相切的直线,切点分别为求直线的方程;

3)若与直线垂直的直线与圆交于不同的两点,若为钝角,求直线轴上的截距的取值范围.

【答案】(1);(2);(3),且.

【解析】【试题分析】(1)依据题设先求圆的半径和方程,再运用弦心距、半弦长、半径之间的关系进行分析求解;(2)依据题设条件构造圆以的方程,再运用两圆的相交弦所在直线即为所求;(3)依据题设条件借助题设条件“为钝角”建立不等式分析探求:

(1)由题意得:圆心到直线的距离为圆的半径,

,所以圆的标准方程为:

所以圆心到直线的距离

(2)因为点,所以,

所以以点为圆心,线段长为半径的圆方程: (1)

又圆方程为: (2),由得直线方程:

(3)设直线的方程为: 联立得:

设直线与圆的交点

,得 (3)

因为为钝角,所以,

即满足,且不是反向共线,

,所以 (4)

由(3)(4)得,满足,即

反向共线时,直线过原点,此时,不满足题意,

故直线轴上的截距的取值范围是,且

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10 m到位置D,测得∠BDC45°,则塔AB的高是( )

A. 10m B. 10m C. 10m D. 10m

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为 ,数列的通项公式为

(1)求数列的通项公式;

(2)设,数列的前项和为

①求

②若,求数列的最小项的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}满足:a1=1,an+1=3an , n∈N+
(1)求{an}的通项公式及前n项和Sn
(2)已知{bn}是等差数列,Tn为前n项和,且b1=a2 , b3=a1+a2+a3 , 求T20

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了提高产品的年产量,某企业拟在2013年进行技术改革,经调查测算,产品当年的产量x万件与投入技术改革费用m万元(m≥0)满足x=3﹣ (k为常数).如果不搞技术改革,则该产品当年的产量只能是1万件.已知2013年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元.由于市场行情较好,厂家生产均能销售出去,厂家将每件产品的销售价格定为每件产品生产成本的1.5倍(生产成本包括固定投入和再投入两部分资金)
(1)试确定k的值,并将2013年该产品的利润y万元表示为技术改革费用m万元的函数(利润=销售金额﹣生产成本﹣技术改革费用);
(2)该企业2013年的技术改革费用投入多少万元时,厂家的利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为对考生的月考成绩进行分析,某地区随机抽查了名考生的成绩,根据所得数据画了如下的样本频率分布直方图.

(1)求成绩在的频率;

(2)根据频率分布直方图算出样本数据的中位数;

(3)为了分析成绩与班级、学校等方面的关系,必须按成绩再从这人中用分层抽样方法抽取出人作出进一步分析,则成绩在的这段应抽多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}为等差数列,且a3=﹣6,a6=0.
(1)求{an}的通项公式.
(2)若等比数列{bn}满足b1=8,b2=a1+a2+a3 , 求{bn}的前n项和公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若存在极值点1,求的值;

(2)若存在两个不同的零点,求证: 为自然对数的底数, ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大学生小王自主创业,在乡下承包了一块耕地种植某种水果,每季投入2万元,根据以往的经验,每季收获的此种水果能全部售完,且水果的市场价格和这块地上的产量具有随机性,互不影响,具体情况如表:

(Ⅰ)设表示在这块地种植此水果一季的利润,求的分布列及期望;

(Ⅱ)在销售收入超过5万元的情况下,利润超过5万元的概率.

查看答案和解析>>

同步练习册答案