精英家教网 > 高中数学 > 题目详情
15.已知a,b,c分别为△ABC三个内角A,B,C的对边,(sinA+sinB)(a-b)=(sinC-sinB)c,S△ABC=$\sqrt{3}$,c=4b,则函数f(x)=bx2-ax+c的零点个数为(  )
A.0B.1C.2D.不确定

分析 利用余弦定理,结合三角形的面积,求出a,b,c,然后求解函数零点个数.

解答 解:a,b,c分别为△ABC三个内角A,B,C的对边,
(sinA+sinB)(a-b)=(sinC-sinB)c,
由正弦定理可得,(a+b)(a-b)=(c-b)c,可得a2=b2+c2-bc,
可得cosA=$\frac{1}{2}$,sinA=$\frac{\sqrt{3}}{2}$,S△ABC=$\sqrt{3}$,$\sqrt{3}$=$\frac{1}{2}bcsinA$,可得bc=4,又c=4b,
解得c=4,b=1,则a=$\sqrt{13}$.
函数f(x)=bx2-ax+c=x2-$\sqrt{13}$x+4,函数的开口向上,
△=13-16=-3<0,二次函数与x轴没有交点,
所以函数的零点个数为0.

点评 此题考查了正弦、余弦定理的应用,二次函数的简单性质的应用,函数零点的求法,熟练掌握定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lnx,g(x)=f(x)+ax2-(2a+1)x.
(Ⅰ)当a=1时,求曲线y=g(x)在点(1,g(1))处的切线方程;
(Ⅱ)当a>0时,试讨论函数g(x)的单调性;
(Ⅲ)设斜率为k的直线与函数f(x)的图象交于两点A(x1,y1),B(x2,y2)(x1<x2),证明:$\frac{1}{{x}_{2}}$<k<$\frac{1}{{x}_{1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.复数$\frac{1+2i}{2-i}$化简是(  )
A.$\frac{3i}{5}$B.$-\frac{3i}{5}$C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设集合A=[-1,+∞),B=[t,+∞),对应法则f:x→y=x2,若能够建立从A到B的函数f:A→B,则实数t的取值范围是(-∞,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.命题“对任意x∈R,都有x2≥0”的否定为(  )
A.对任意x∈R,使得x2<0B.不存在x∈R,使得x2<0
C.存在x0∈R,都有$x_0^2≥0$D.存在x0∈R,都有$x_0^2<0$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知命题p:x2-4x-5≤0,命题q:x2-2x+1-m2≤0(m>0).
(1)若p是q的充分条件,求实数m的取值范围;
(2)若m=5,p∨q为真命题,p∧q为假命题,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某校运动会开幕式上举行升旗仪式,在坡度为15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为$10\sqrt{6}$m(如图所示),则旗杆的高度为(  )
A.10mB.30mC.10mD.10m

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某几何体的三视图如图所示(单位:cm),则该几何体的体积是$\frac{16}{3}$cm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图是一个组合体的三视图,根据图中数据,可得该几何体的体积是(  )
A.$\frac{38π}{3}$B.$\frac{19π}{3}$C.$\frac{13π}{3}$D.$\frac{11π}{3}$

查看答案和解析>>

同步练习册答案