精英家教网 > 高中数学 > 题目详情
已知sin(
π
4
-x)=
3
5
,则sin2x的值为(  )
A、
19
25
B、
16
25
C、
14
25
D、
7
25
分析:解法1:利用两角和与差的正弦函数公式及特殊角的三角函数值化简已知的等式,然后将化简后的等式两边平方,利用同角三角函数间的基本关系及二倍角的正弦函数公式化简,即可求出sin2x的值;
解法2:令
π
4
-x=α
,求出x,原式变形为sinα的值为
3
5
,把x的值代入所求式子中,利用诱导公式化简后,再利用二倍角的余弦函数公式化简,将sinα的值代入即可求出值.
解答:解:法1:由已知得
2
2
(cosx-sinx)=
3
5

两边平方得
1
2
(1-sin2x)=
9
25
,求得sin2x=
7
25

法2:令
π
4
-x=α
,则sinα=
3
5

所以sin2x=sin(
π
2
-2α)=cos2α=1-2sin2α=
7
25

故选D
点评:此题考查了二倍角的正弦、余弦函数公式,两角和与差的正弦函数公式及诱导公式,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sin(
π
4
-x)=-
1
5
,且0<x<
π
2
,求sin(
π
4
+x)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(
π
4
-x)=
4
5
,则sin2x的值为
-
7
25
-
7
25

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江模拟)已知sin(
π
4
-x)=
3
4
,且x∈(-
π
2
,-
π
4
)
,则cos2x的值为
-
3
7
8
-
3
7
8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(
π
4
-x)=
12
13
,且0<x<
π
4
,求
cos2x
cos(
π
4
+x)

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知sin(
π
4
-x)=
5
13
,且0<x<
π
4
,求
cos2x
cos(
π
4
+x)
的值.
(2)已知tan(α-β)=
1
2
,tanβ=-
1
7
,且α,β∈(0,π),求2α-β的值.

查看答案和解析>>

同步练习册答案