精英家教网 > 高中数学 > 题目详情

【题目】使用支付宝和微信支付已经成为广大消费者最主要的消费支付方式,某超市通过统计发现一周内超市每天的净利润(万元)与每天使用支付宝和微信支付的人数(千人)具有相关关系,并得到最近一周的7组数据如下表,并依此作为决策依据.

周一

周二

周三

周四

周五

周六

周日

13

16

26

22

25

29

30

7

11

15

22

24

27

34

(Ⅰ)作出散点图,判断哪一个适合作为每天净利润的回归方程类型?并求出回归方程(精确到);

(Ⅱ)超市为了刺激周一消费,拟在周一开展使用支付宝和微信支付随机抽奖活动,总奖金7万元.根据市场调查,抽奖活动能使使用支付宝和微信支付消费人数增加6千人,7千人,8千人,9千人的概率依次为.试决策超市是否有必要开展抽奖活动?

参考数据: .

参考公式:.

【答案】(Ⅰ) 见解析;(Ⅱ) 超市有必要开展抽奖活动

【解析】

(Ⅰ)在所给的坐标系中,画出散点图,可以发现选择作为每天净利润的回归方程类型比较合适,计算出,按照所给的公式可以求出,最后求出回归方程;

(Ⅱ)根据离散型随机分布列的性质,可以求出值,然后可以求出数学期望,再利用(Ⅰ)

求出的回归直线方程,可以预测出超市利润,除去总奖金,可以求出超市的净利润,最后判断出是否有必要开展抽奖活动.

解:(Ⅰ)散点图如图所示

根据散点图可判断,选择作为每天净利润的回归方程类型比较合适

关于的回归方程为

(Ⅱ)

活动开展后使用支付宝和微信支付的人数的期望为

(千人)

由(Ⅰ)得,当时,

此时超市的净利润约为,故超市有必要开展抽奖活动

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数的图象与直线没有交点,求的取值范围;

2)设,若函数的图象有且只有一个公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.在购进机器时,可以一次性额外购买几次维修服务,每次维修服务费用200元,另外实际维修一次还需向维修人员支付小费,小费每次50元.在机器使用期间,如果维修次数超过购机时购买的维修服务次数,则每维修一次需支付维修服务费用500元,无需支付小费.现需决策在购买机器时应同时一次性购买几次维修服务,为此搜集并整理了100台这种机器在三年使用期内的维修次数,得下面统计表:

维修次数

8

9

10

11

12

频数

10

20

30

30

10

x表示1台机器在三年使用期内的维修次数,y表示1台机器在维修上所需的费用(单位:元),表示购机的同时购买的维修服务次数.

(1)若=10,求yx的函数解析式;

(2)若要求“维修次数不大于的频率不小于0.8,求n的最小值;

(3)假设这100台机器在购机的同时每台都购买10次维修服务,或每台都购买11次维修服务,分别计算这100台机器在维修上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买10次还是11次维修服务?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,等边△ABC中,AC=4,D是边AC上的点(不与A,C重合),过点D作DE∥BC交AB于点E,沿DE将△ADE向上折起,使得平面ADE⊥平面BCDE,如图2所示.

(1)若异面直线BE与AC垂直,确定图1中点D的位置;

(2)证明:无论点D的位置如何,二面角D﹣AE﹣B的余弦值都为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛掷两枚质地均匀的硬币,设事件A=“第一枚硬币正面朝上,事件B=“第二枚硬币反面朝上”.

1)写出样本空间,并列举AB包含的样本点;

2)下列结论中正确的是( .

A.AB互为对立事件 B.AB互斥 C.AB相等 D.PA=PB

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列说法是否正确,若错误,请举出反例

1)互斥的事件一定是对立事件,对立事件不一定是互斥事件;

2)互斥的事件不一定是对立事件,对立事件一定是互斥事件;

3)事件与事件B中至少有一个发生的概率一定比B中恰有一个发生的概率大;

4)事件与事件B同时发生的概率一定比B中恰有一个发生的概率小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数的定义域为,且存在实常数,使得对于定义域内任意,都有成立,则称此函数具有“性质.

1)判断函数是否具有“性质”,若具有“性质”,求出所有的值的集合,若不具有“性质”,请说明理由;

2)已知函数具有“性质”,且当时,,求函数在区间上的值域;

3)已知函数既具有“性质”,又具有“性质”,且当时,,若函数的图像与直线2017个公共点,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】继共享单车之后,又一种新型的出行方式------“共享汽车”也开始亮相北上广深等十余大中城市,一款叫“一度用车”的共享汽车在广州提供的车型是“奇瑞eQ”,每次租车收费按行驶里程加用车时间,标准是“1元/公里+0.1元/分钟”,李先生家离上班地点10公里,每天租用共享汽车上下班,由于堵车因素,每次路上开车花费的时间是一个随机变量,根据一段时间统计40次路上开车花费时间在各时间段内的情况如下:

时间(分钟)

次数

8

14

8

8

2

以各时间段发生的频率视为概率,假设每次路上开车花费的时间视为用车时间,范围为分钟.

(Ⅰ)若李先生上.下班时租用一次共享汽车路上开车不超过45分钟,便是所有可选择的交通工具中的一次最优选择,设是4次使用共享汽车中最优选择的次数,求的分布列和期望.

(Ⅱ)若李先生每天上下班使用共享汽车2次,一个月(以20天计算)平均用车费用大约是多少(同一时段,用该区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.

(1)求椭圆的方程式;

(2)已知动直线与椭圆相交于两点.

①若线段中点的横坐标为,求斜率的值;

②已知点,求证: 为定值.

查看答案和解析>>

同步练习册答案