精英家教网 > 高中数学 > 题目详情
已知圆C:x2+y2-8x=0与直线l:y=-x+m,
(1)m=1时,判断直线l与圆C的位置关系;
(2)若直线l与圆C相切,求实数m的值.
分析:(1)把圆的方程化为标准方程,找出圆心C的坐标和半径r,当m=1时,利用点到直线的距离公式求出圆心C到直线l的距离d,判定d与r的大小即可确定出直线l与圆C的位置关系;
(2)联立直线l与圆的方程,消去y后得到关于x的一元二次方程,由直线与圆相切时只有一个公共点,得到跟的判别式等于0,列出关于m的方程,求出方程的解即可得到m的值.
解答:解:(1)由x2+y2-8x=0得(x-4)2+y2=42
所以圆心C(4,0),半径r=4(2分)
m=1时圆心C到直线l的距离为d=
|4+0-1|
12+12
=
3
2
2
(4分)
因为d<r(5分)
所以直线l:y=-x+1与圆C相交于两点(6分)
(2)联立方程组
y=-x+m
x2+y2-8x=0

消去y,化简得2x2-(2m+8)x+m2=0(8分)
要使直线l与圆C相切,则有△=(2m+8)2-8m2=0(10分)
即m2-8m-16=0,解得:m=4±4
2
(12分)
点评:此题考查了直线与圆的位置关系,要求学生掌握点到直线的距离公式.圆心到直线的距离为d,圆的半径为r,当d>r时,直线与圆的位置关系为相离;当d=r时,直线与圆相切;当d<r时,直线与圆相交.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:x2+y2-6x-4y+8=0.以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件双曲线的标准方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)一个圆与x轴相切,圆心在直线3x-y=0上,且被直线x-y=0所截得的弦长为2
7
,求此圆方程.
(2)已知圆C:x2+y2=9,直线l:x-2y=0,求与圆C相切,且与直线l垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•普陀区一模)如图,已知圆C:x2+y2=r2与x轴负半轴的交点为A.由点A出发的射线l的斜率为k,且k为有理数.射线l与圆C相交于另一点B.
(1)当r=1时,试用k表示点B的坐标;
(2)当r=1时,试证明:点B一定是单位圆C上的有理点;(说明:坐标平面上,横、纵坐标都为有理数的点为有理点.我们知道,一个有理数可以表示为
qp
,其中p、q均为整数且p、q互质)
(3)定义:实半轴长a、虚半轴长b和半焦距c都是正整数的双曲线为“整勾股双曲线”.
当0<k<1时,是否能构造“整勾股双曲线”,它的实半轴长、虚半轴长和半焦距的长恰可由点B的横坐标、纵坐标和半径r的数值构成?若能,请尝试探索其构造方法;若不能,试简述你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州一模)已知圆C:x2+y2=r2(r>0)与抛物线y2=40x的准线相切,若直线l:
x
a
y
b
=1
与圆C有公共点,且公共点都为整点(整点是指横坐标.纵坐标都是整数的点),那么直线l共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2=4与直线L:x+y+a=0相切,则a=(  )

查看答案和解析>>

同步练习册答案