【题目】已知函数
(I)求函数f(x)的最小正周期和对称中心的坐标
(II)设,求函数g(x)在上的最大值,并确定此时x的值
【答案】(I) , . (II) 见解析.
【解析】试题分析:(Ⅰ)由二倍角公式和化一公式化简可得;
(Ⅱ)由(Ⅰ)知的解析式,把代入求,进而求出g(x),结合x的范围,求出最大值即可.
试题解析:(I)
∴函数f(x)的最小正周期,
由,得,
∴函数f(x)的对称中心的坐标为.
(II)由(I)可得f(x-)=2sin[ (x-)+]=2sin(x+),
∴g(x)=[f(x-)]2=4×=2-2cos(3x+),
∵x∈[-,],∴-≤3x+≤,
∴当3x+=π,即x=时,g(x)max=4.
点睛:三角函数式的化简要遵循“三看”原则:(1)一看“角”,这是最重要的一环,通过看角之间的区别和联系,把角进行合理的拆分,从而正确使用公式;(2)而看“函数名称”看函数名称之间的差异,从而确定使用公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式通分”等.
科目:高中数学 来源: 题型:
【题目】已知数列的前n项和为,,且,数列满足,,其前9项和为63.
(1)求数列和的通项公式;
(2)令,数列的前n项和为,若对任意正整数n,都有,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两名运动员的5次测试成绩如下图所示:
甲 | 茎 | 乙 |
5 7 | 1 | 6 8 |
8 8 2 | 2 | 3 6 7 |
设s1 , s2分别表示甲、乙两名运动员测试成绩的标准差, 分别表示甲、乙两名运动员测试成绩的平均数,则有( )
A. ,s1<s2
B. ,s1>s2
C. ,s1>s2
D. ,s1=s2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,长方体ABCD﹣A′B′C′D′中,AB=2 ,AD=2 ,AA′=2,
(Ⅰ)求异面直线BC′ 和AD所成的角;
(Ⅱ)求证:直线BC′∥平面ADD′A′.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱柱ABCD﹣A1B1C1D1的底面是边长为2的菱形,且∠BAD= ,AA1⊥平面ABCD,AA1=1,设E为CD中点
(1)求证:D1E⊥平面BEC1
(2)点F在线段A1B1上,且AF∥平面BEC1 , 求平面ADF和平面BEC1所成锐角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学家祖暅提出原理:“幂势既同,则积不容异”.其中“幂”是截面积,“势”是几何体的高.原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图所示,在空间直角坐标系的坐标平面内,若函数的图象与轴围成一个封闭区域,将区域沿轴的正方向上移4个单位,得到几何体如图一.现有一个与之等高的圆柱如图二,其底面积与区域面积相等,则此圆柱的体积为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,P是直线x=4上一动点,以P为圆心的圆Γ经定点B(1,0),直线l是圆Γ在点B处的切线,过A(﹣1,0)作圆Γ的两条切线分别与l交于E,F两点.
(1)求证:|EA|+|EB|为定值;
(2)设直线l交直线x=4于点Q,证明:|EB||FQ|=|BF|EQ|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一装有水的直三棱柱容器(厚度忽略不计),上下底面均为边长为5的正三角形,侧棱为10,侧面水平放置,如图所示,点, , , 分别在棱, , , 上,水面恰好过点, , , ,且.
(1)证明: ;
(2)若底面水平放置时,求水面的高.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com