精英家教网 > 高中数学 > 题目详情
若数列a1、a2、a3、a4成等比数列且a1a2=-
32
3
,a2a3=-24,则q=
±
3
2
±
3
2
分析:利用等比数列的通项公式以及已知条件得出
a1a2
a2a3
=
1
q2
,即可求出q的值.
解答:解:∵a1a2=-
32
3
,a2a3=-24,
a1a2
a2a3
=
a1
a3
=
1
q2
=
4
9

∴q=±
3
2

故答案为:±
3
2
点评:此题考查了等比数列的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

14、已知数列A:a1,a2,…,an(0≤a1<a2<…<an,n≥3)具有性质P:对任意i,j(1≤i≤j≤n),aj+ai与aj-ai两数中至少有一个是该数列中的一项.现给出以下四个命题:
①数列0,1,3具有性质P;
②数列0,2,4,6具有性质P;
③若数列A具有性质P,则a1=0;
④若数列a1,a2,a3(0≤a1<a2<a3)具有性质P,则a1+a3=2a2
其中真命题有
②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

8、已知数列A:a1,a2,…,an(0≤a1<a2<…<an,n≥3)具有性质P:对任意i,j(1≤i≤j≤n),aj+ai与aj-ai两数中至少有一个是该数列中的一项、现给出以下四个命题:①数列0,1,3具有性质P;②数列0,2,4,6具有性质P;③若数列A具有性质P,则a1=0;④若数列a1,a2,a3(0≤a1<a2<a3)具有性质P,则a1+a3=2a2,其中真命题有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列a1,a2,a3,…,an,…是公差不为零的等差数列,且an>0,则下列四个数列
①lga1,lga2,…,lgan,…;
2a12a2,…,2an,…
③a1a2,a2a3,…,anan+1,…;
④a1+a2,a2+a3,…,an+an+1,….
其中一定是等比数列的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列a1,a2,…,ak,…,a10中的每一项皆为1或-1,则a1+a2+…+ak+…+a10之值有多少种可能(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北模拟)已知数列A:a1,a2,…,an(0≤a1<a2<…an,n≥3)具有性质P;对任意i,j(1≤i≤j≤n),aj+ai与aj-ai两数中至少有一个是该数列中的一项,现给出以下四个命题:
①数列0,2,4,6具有性质P;
②若数列A具有性质P,则a1=0;
③若数列A具有性质P且a1≠0an-an-k=ak(k=1,2,…,(n-1);
④若数列a1,a2,a3(0≤a1<a2<a3)具有性质P,则a3=a1+a2
其中真命题有(  )

查看答案和解析>>

同步练习册答案