精英家教网 > 高中数学 > 题目详情

已知直线l^平面a,直线mÌ平面b,下面四个命题正确的是( )

abÞl^m      a^bÞlm      lmÞa^b      l^mÞab

A.①与②       B.③与④       C.②与④       D.①与③

 

答案:D
提示:

①与③的条件均可推出l^平面b,故都正确.

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

平面直角坐标系xOy中,已知以O为圆心的圆与直线l:y=mx+(3-4m)恒有公共点,且要求使圆O的面积最小.
(1)写出圆O的方程;
(2)圆O与x轴相交于A、B两点,圆内动点P使|
PA
|
|
PO
|
|
PB
|
成等比数列,求
PA
PB
的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面直角坐标系中,直线l的参数方程是
x=t
y=
3
t
(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为ρ2cos2θ+ρ2sin2θ-2ρsinθ-3=0.
(1)求直线l的极坐标方程;
(2)若直线l与曲线C相交于A、B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面直角坐标系中,已知直线l:x=4,定点F(1,0),动点P(x,y)到直线l的距离是到定点F的距离的2倍.
(1)求动点P的轨迹C的方程;
(2)若M为轨迹C上的点,以M为圆心,MF长为半径作圆M,若过点E(-1,0)可作圆M的两条切线EA,EB(A,B为切点),求四边形EAMB面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2011年广东省深圳市高考数学二模试卷(理科)(解析版) 题型:解答题

平面直角坐标系中,已知直线l:x=4,定点F(1,0),动点P(x,y)到直线l的距离是到定点F的距离的2倍.
(1)求动点P的轨迹C的方程;
(2)若M为轨迹C上的点,以M为圆心,MF长为半径作圆M,若过点E(-1,0)可作圆M的两条切线EA,EB(A,B为切点),求四边形EAMB面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省南京外国语学校高三考前适应性测试数学试卷(解析版) 题型:解答题

平面直角坐标系中,已知直线l:x=4,定点F(1,0),动点P(x,y)到直线l的距离是到定点F的距离的2倍.
(1)求动点P的轨迹C的方程;
(2)若M为轨迹C上的点,以M为圆心,MF长为半径作圆M,若过点E(-1,0)可作圆M的两条切线EA,EB(A,B为切点),求四边形EAMB面积的最大值.

查看答案和解析>>

同步练习册答案