精英家教网 > 高中数学 > 题目详情
若x,y满足不等式组 
x-y≥0
2x-y-10≤0
3
x+y-5
3
≥0
,则2x+y的最大值是
 
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.
解答: 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过A时,直线y=-2x+z的截距最大,
此时z最大.
x-y=0
2x-y-10=0
,解得
x=10
y=10
,即A(10,10),
代入目标函数z=2x+y得z=2×10+10=30.
即目标函数z=2x+y的最大值为30.
故答案为:30
点评:本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于正整数n,若n=pq(p≥q,p,q∈N*),当p-q最小时,则称pq为n的“最佳分解”,规定f(n)=
q
p
.关于f(n)有下列四个判断:①f(9)=1;②f(12)=
1
3
;③f(17)=
1
17
;④f(2014)=
1
2014
;⑤若f(n)=1,则n=k2,k∈N*;⑥若f(n)=
1
n
,则n为质数.其中正确的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosx+sinx,2sinx),
b
=(cosx-sinx,-cosx),f(x)=
a
b

(1)求f(x)的最小正周期;
(2)当x∈[
π
4
4
]时,求f(x)的最小值以及取得最小值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线x+y=a与圆x2+y2=4交于A,B两点,且OA⊥OB(其中O为坐标原点),则实数a等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,当x1=6,x2=9,p=8.5时,x3等于(  )
A、8B、4C、10D、9

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=lnx+2x-6的零点为x0,则满足x0∈(k,k+1)且k为整数,则k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设α,β为函数h(x)=2x2-mx-2的两个零点,m∈R且α<β,函数f(x)=
4x-m
x2+1

(1)求的f(α)•f(β)值;
(2)判断f(x)在区间[α,β]上的单调性并用函数单调性定义证明;
(3)是否存在实数m,使得函数f(x)在[α,β]的最大值与最小值之差最小?若存在,求出m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列判断正确的是(  )
A、二次函数一定有零点
B、奇函数一定有零点
C、偶函数一定有零点
D、以上说法均不正确

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数φ(x)=
a
x+1
,a为常数.
(1)若f(x)=lnx+φ(x),且a=
9
2
,求函数f(x)的单调区间;
(2)若g(x)=|lnx|+φ(x),且对任意x1,x2∈(0,2],当x1≠x2时,都有
g(x2)-g(x1)
x 2-x 1
<-1,求a的取值范围.

查看答案和解析>>

同步练习册答案