【题目】甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为,各局比赛的结束相互独立,第1局甲当裁判.
(Ⅰ)求第4局甲当裁判的概率;
(Ⅱ)X表示前4局中乙当裁判的次数,求X的数学期望.
【答案】(Ⅰ)(Ⅱ)
【解析】
(1)利用独立事件的概率公式求解,关键是明确A表示事件“第4局甲当裁判”和表示事件“第2局结果为甲胜”,表示事件“第3局甲参加比赛时,结果为甲负”之间个独立关系;(2)明确X的可能取值,然后利用独立事件和互斥事件的公式逐一求解.因当x=1时较为复杂,故采用对立事件概率问题进行求解,即
(Ⅰ)记表示事件“第2局结果为甲胜”,
表示事件“第3局甲参加比赛时,结果为甲负”,
A表示事件“第4局甲当裁判”.
则.
.
(Ⅱ)X的可能取值为0,1,2.
记表示事件“第3局乙和丙比赛时,结果为乙胜丙”,
表示事件“第1局结果为乙胜丙”,
表示事件“第2局乙和甲比赛时,结果为乙胜甲”,
表示事件“第3局乙参加比赛时,结果为乙负”.
则
,
,
.
科目:高中数学 来源: 题型:
【题目】已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.
(I)应从甲、乙、丙三个部门的员工中分别抽取多少人?
(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.
(i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;
(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列有关命题的说法正确的是( )
A. 命题“若,则”的否命题为:“若则”
B. 若为真命题,为假命题,则均为假命题
C. 命题“若成等比数列,则”的逆命题为真命题
D. 命题“若,则”的逆否命题为真命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十九大提出,坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村真脱贫,坚持扶贫同扶智相结合,帮助贫困村种植蜜柚,并利用电商进行销售,为了更好地销售,现从该村的蜜柚树上随机摘下了100个蜜柚进行测重,其质量分别在,,,,,单位:克中,其频率分布直方图如图所示.
Ⅰ按分层抽样的方法从质量落在,的蜜柚中抽取5个,再从这5个蜜柚中随机抽取2个,求这2个蜜柚质量均小于2000克的概率;
Ⅱ以各组数据的中间数代表这组数据的平均水平,以频率代表概率,已知该贫困村的蜜柚树上大约还有5000个蜜柚等待出售,某电商提出两种收购方案:
A.所有蜜柚均以40元千克收购;
B.低于2250克的蜜柚以60元个收购,高于或等于2250克的以80元个收购.
请你通过计算为该村选择收益最好的方案.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位利用周末时间组织职工进行一次“健康之路、携手共筑”徒步走健身活动,有人参加,现将所有参加人员按年龄情况分为,六组,其频率分布直方图如图所示,已知岁年龄段中的参加者有人.
(1)求的值并补全频率分布直方图;
(2)从岁年龄段中采用分层抽样的方法抽取人作为活动的组织者,其中选取人作为领队,记选取的名领队中年龄在岁的人数为,求的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题:
①样本方差反映的是所有样本数据与样本平均值的偏离程度;
②某校高三一级部和二级部的人数分别是m、n,本次期末考试两级部数学平均分分别是a、b,则这两个级部的数学平均分为
③某中学采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查,现将800名学生从001到800进行编号,已知从497--512这16个数中取得的学生编号是503,则初始在第1小组00l~016中随机抽到的学生编号是007.
其中命题正确的个数是( )
A.0个 B.1个 C.2个 D.3个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a<2,函数f(x)=(x2+ax+a)ex.
(1)当a=1时,求f(x)的单调递增区间;
(2)若f(x)的极大值是6e-2,求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(12分)已知等差数列{an}中,a1=1,a3=﹣3.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{an}的前k项和Sk=﹣35,求k的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com